Appendix 15.A Grab Sample Water Quality Parameters

Test Group	Parameter	Test location			
	Arsenic	Lab			
	Chromium	Lab			
	Copper	Lab			
Trace Metals - dissolved	Nickel	Lab			
and totals	Cadmium	Lab			
	Lead	Lab			
	Zinc	Lab			
	Acid soluble aluminium	Lab			
Organic compounds	Polycyclic aromatic hydrocarbons (PAH)	Lab			
organic compounds	Benzene, toluene, ethylbenzene, xylene (BTEX)	Lab			
	Total Nitrogen	Lab			
	Total Ammoniacal Nitrogen	Lab			
	Total Phosphorus (TP)	Lab			
Nutrients	Dissolved Inorganic Nitrogen (DIN)	Lab			
	Total Kjeldahl Nitrogen	Lab			
	Nitrite-nitrate Nitrogen	Lab			
	Dissolved Reactive Phosphorus (DRP)	Lab			
	Dissolved oxygen saturation	Field			
	Temperature	Field			
Physical tests	рН	Field			
i flysical tests	Conductivity	Field			
	Turbidity	Lab			
	Total Suspended Solids	Lab			
	Oil or grease films	Field			
	Scums or foams	Field			
Field observations	Floatable or suspended materials	Field			
	Objectionable odour	Field			
	Colour and visual clarity	Field – Munsell Colour and Black Disc Clarity			

Appendix 15.B Water Quality Guidelines

Those guidelines relevant to baseline sampling and relevant to the parameters expected in stormwater discharges during the construction and operational phase are summarised in this section

Tables B.1 to B.6 give trigger values used in interpreting the baseline water quality data for parameters grouped by their potential effect. Parameters where there no relevant triggers exist are listed in **Table B.7**.

 Table B.1 Trigger Levels for Toxicants Applied to Freshwater Streams in Transmission Gully Catchments

Parameter	Trigger value	Source
Tota	al and dissolved m	vetals ^f (g/m³)
Arsenic (AsV)	0.013 ^c	
Chromium (CrVI)	0.001 ^d	
Copper	0.0014	
Nickel	0.011	ANZECC 2000 95% Ecological trigger value
Cadmium	0.0002	
Lead	0.0034	
Zinc	0.008	
Acid soluble aluminium	0.15 ^e	Greater Wellington 1999
Aluminium	0.055 ^e	ANZECC 2000 95% Ecological trigger value
C6-C	9 Aromatic hydroc	arbons (g/m³)
Benzene	0.95	
Toluene	0.18ª	
Ethylbenzene	0.08 ^a	ANZECC 2000 95% Ecological trigger value
m & p-Xylene	0.075ª	
o - Xylene	0.35	
Polycyclic a	aromatic hydrocart	oons (PAH's) (g/m³)
Anthracene	1 x 10 ⁻⁵	ANZECC 2000 000/ Feelegied trigger value
Benzo[a]pyrene (BAP)	0.0008	ANZECC 2000 99% Ecological trigger value
Chrysene	-	-
Fluoranthene	0.001	ANZECC 2000 99% Ecological trigger value
Fluorene	0.003	Canadian 2002
Naphthalene	0.05	ANZECC 2000 000/ Ecological trigger value
Phenanthrene	6 x 10 ⁻⁴	ANZECC 2000 99% Ecological trigger value
Pyrene	2.5 x 10 ⁻⁵	Canadian 2002

Notes:

^a In general the 95% protection level has been used unless noted (to provide for protection of 95% of species in typical slightly-moderately disturbed systems).

■ Table B.2 Trigger Levels for Physical and Chemical Stressors Applied to Freshwater Streams in Transmission Gully Catchments^a

Parameter	ANZECC 2000 risk based trigger values	Greater Wellington 1999
	Nutrients (g/m³ ur	nless stated)
Total Phosphorus	0.033	
Dissolved Reactive Phosphorus ^b	0.01	
Total Nitrogen	0.614	
Total Ammoniacal Nitrogen ^c	0.021	
Nitrogen Oxides ^c	0.444	
рН	Typical values between 6.5 - 9.0	No pH change shall be involved if it has an adverse effect on aquatic life ^d
Dissolved Oxygen	98-105%	Greater vveilington 1999 (g/m³ unless stated) veen No pH change shall be involved if it has an adverse effect

Notes:

^b The ANZECC guidelines state that some polycyclic aromatic hydrocarbons (PAH's) have the potential to bioaccumulate. Where no bioaccumulation data is available it is recommended to apply 99% trigger level

^c More conservative arsenic trigger value used (vs AsIII) as speciation is not determined in results

^d More conservative chromium trigger value used as Cr speciation is not determined in results

^e The Regional Freshwater Plan sets a limit that the concentration of acid soluble aluminium in discharges shall not exceed this value. It is used in this report for comparison of whether the background concentration already exceeds that limit only.

^f Both total and dissolved metal concentrations have been measured. The dissolved fraction is more bioavailable and therefore gives a better indication of toxicity. Concentrations of total metals will therefore tend to overestimate the amount that is bioavailable. Both total and dissolved concentrations have been compared to the trigger levels.

⁹ Aluminium limit in the ANZECC guidelines is for pH >6.5. Some sample results will be different pH's.

^aTrigger values are applicable to slightly disturbed ecosystems in New Zealand. Where slightly disturbed ecosystems are defined as aquatic ecosystems that may have some experienced some adverse effects caused by human activity.

^b The guidelines are for Filterable Reactive Phosphorous (FRP), this is the same as DRP as long as a suitable sized filter is used.

^cDissolved inorganic nitrogen (DIN) has also been measured. Because there is no trigger level for DIN, we have compared total ammoniacal nitrogen (NH_4^+) and nitrogen oxides (NO_x) to their respective trigger levels, where DIN = NH_4^+ + NO_x

^dLevel applies to streams managed for aquatic ecosystems only.

■ Table B.3 Trigger Levels for Other Measured Parameters Applied to Freshwater Streams in Transmission Gully Catchments

Parameter	ANZECC 2000	Greater Wellington 1999	NZ specific guideline
Temperature (C°)		The natural temperature of the water should not be changed by more than 3°C	
Turbidity (NTU)			15 ^a (upper limit)
Oil or grease films		Presence of conspicuous	
Scums or foams		Presence of conspicuous	
Floatable or suspended materials		Presence of conspicuous	
Objectionable odour		Presence of conspicuous	
Munsell colour (Munsell units)		Conspicuous change in colour	
Black disc clarity (m)	0.8 ^b (lower limit)	Conspicuous change in clarity	

Notes:

Table B.4 Trigger Levels for Parameters Relevant to Livestock Water Consumption

Parameter	ANZECC 2000 threshold (g/m³)
Total Dissolved Solids	2000 ^a
Aluminium	5
Total Arsenic	0.5
Total Cadmium	0.01
Total Copper	0.5
Total Chromium	1
Total Nickel	1
Total Zinc	20
Nitrate-Nitrogen	1772 ^b
Nitrite-Nitrogen	5850 ^c

Notes:

^aUpper limit defined by Boubee et al., 1997 which should be maintained in clear water streams to allow the migration of the most common New Zealand native freshwater fish species. If clarity measurements are not able to be obtained guidance for turbidity should be used instead. The turbidity should not be changed by more than 30% (Opus, 2008).

^b Default trigger value for unmodified or slightly disturbed ecosystems in New Zealand

^a Lower threshold for poultry used. Above this threshold animals may have initial reluctance to drink or there may be some scouring, but stock should be able to adapt without loss of production. Higher thresholds exist for beef cattle (4000), dairy cattle (2400), sheep (4000), horses (4000) and pigs (4000). Additional higher thresholds where a loss of production and decline in animal condition and health would be expected have not been used.

^b Guideline values are given in terms of nitrate and nitrite, whereas data has been reported for nitrate-nitrogen and nitrite-nitrogen. The following conversions were used calculate appropriate thresholds:

■ Table B.5 Metal Water Quality Guidelines for Recreational Purposes (ANZECC, 2000)

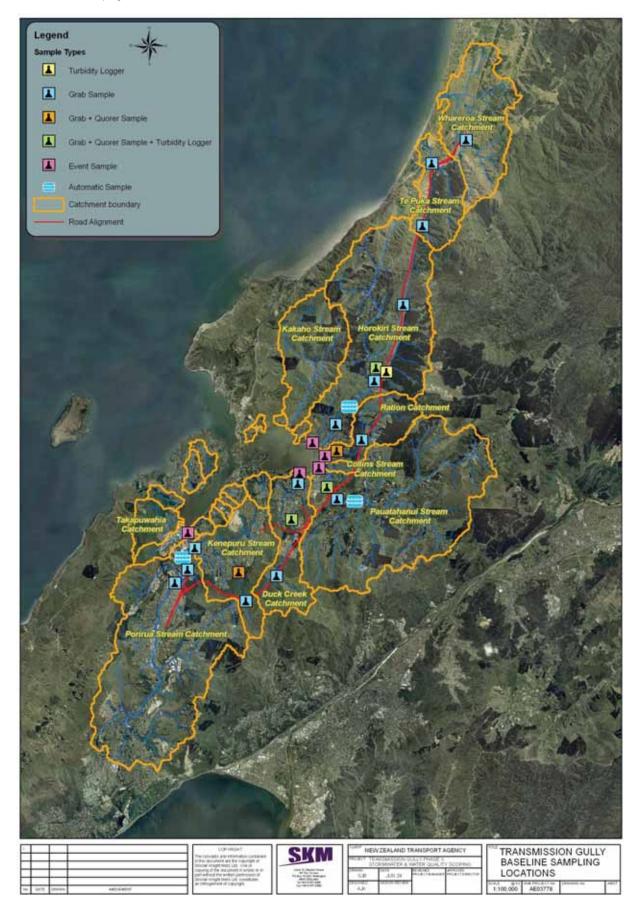
Parameter	Guideline (g/m³)
Zinc	5
Copper	1

Table B.6 Metal Water Quality Guidelines for Human Fish Consumption (ANZECC, 2000)

Parameter	Guideline (g/m³)
Zinc	5
Copper	1

Table B.7 Parameters Analysed for Which No Relevant Trigger Levels Were Identified

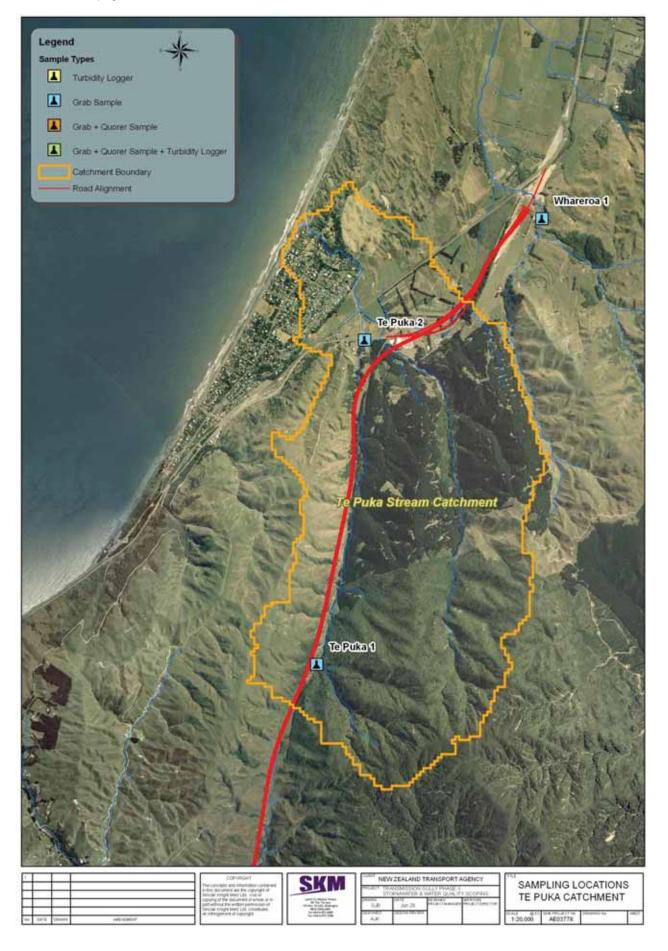
Parameter (g/m³ unless stated)
Total suspended solids ^a
Conductivity (µS/m)
Acenaphthene
Acenaphthylene
Benzo[a]anthracene
Benzo[a]fluoranthene + Benzo[j]fluoranthene
Benzo[g,h,i]perylene
Benzo[k]fluoranthene
Dibenzo[a,h]anthracene
Ideno (1,2,3, c,d) pyrene


Notes:

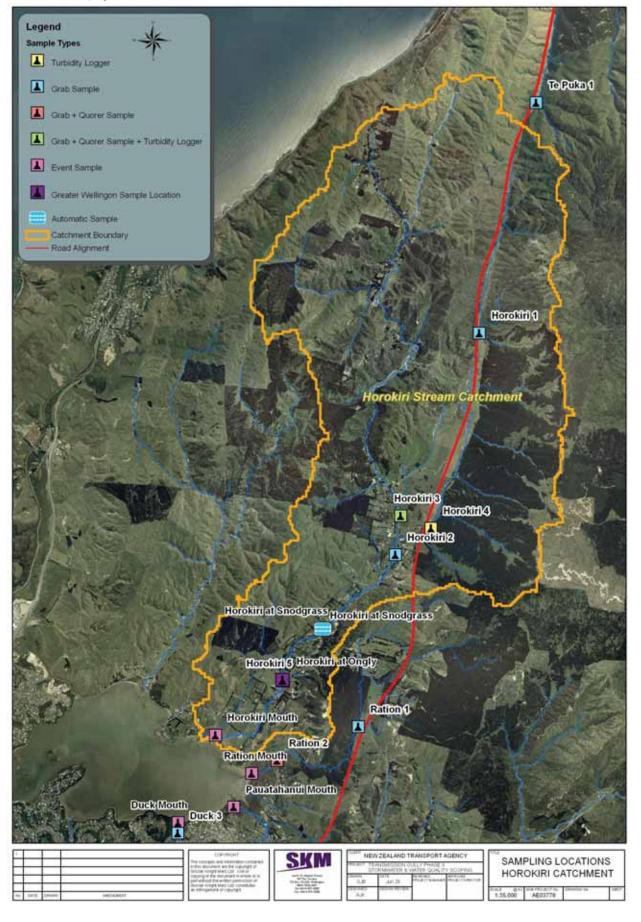
^aNo guideline for TSS has been provided. Refer to the NZ specific guideline for turbidity. The correlation between TSS and turbidity is strongly positively correlated. It can also vary in different streams. Relationships between these two variables were only calculated for selected streams. Therefore, we have not determined site specific TSS thresholds for different locations.

Appendix 15.C Maps of Sampling Locations

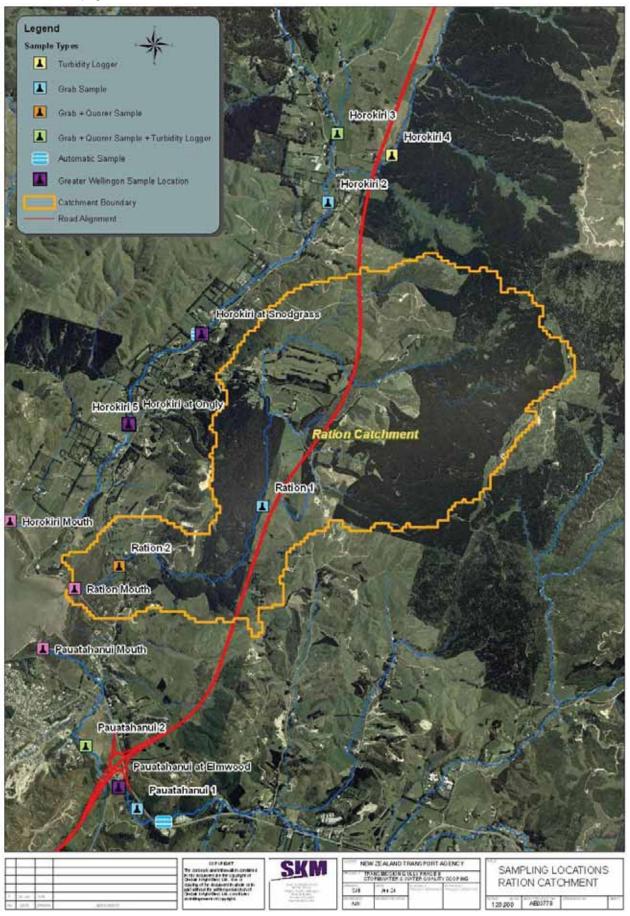
C1 - Overview of Sampling Locations



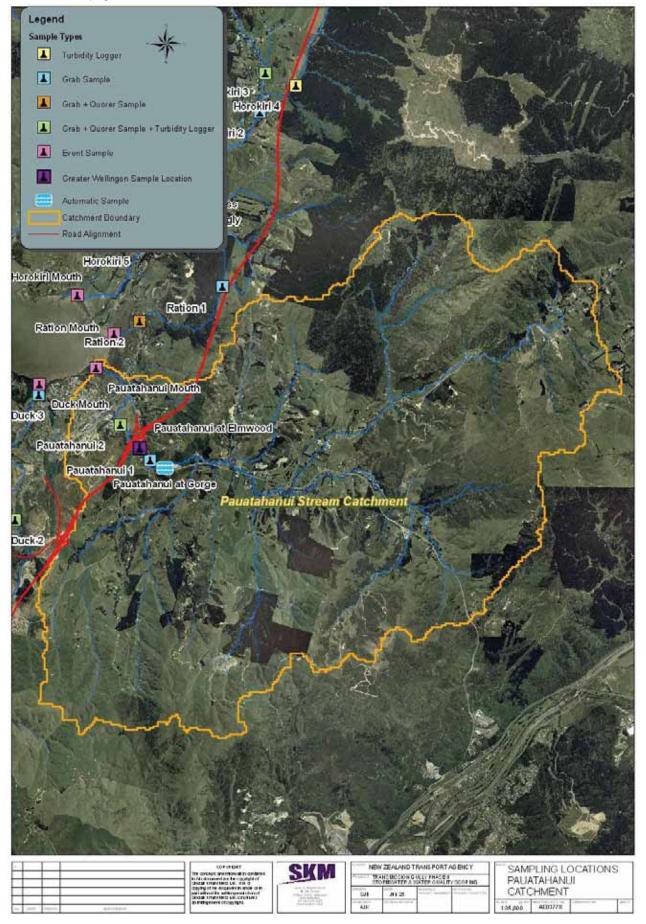
C2 - Catchment Sampling Locations - Whareroa Stream



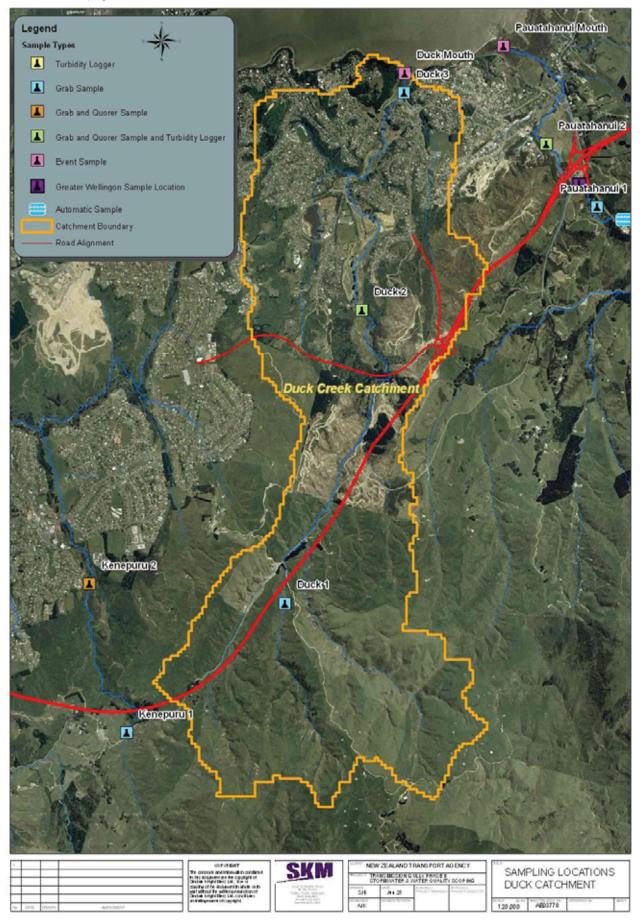
C3 - Catchment Sampling Locations – Wainui and Te Puka Streams



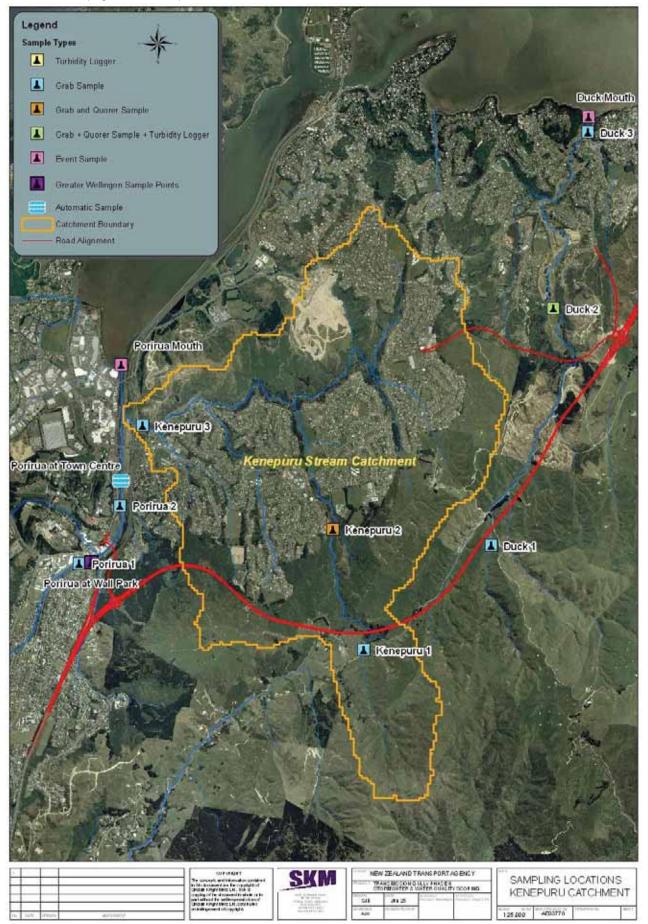
C4 - Catchment Sampling Locations - Horokiri Stream



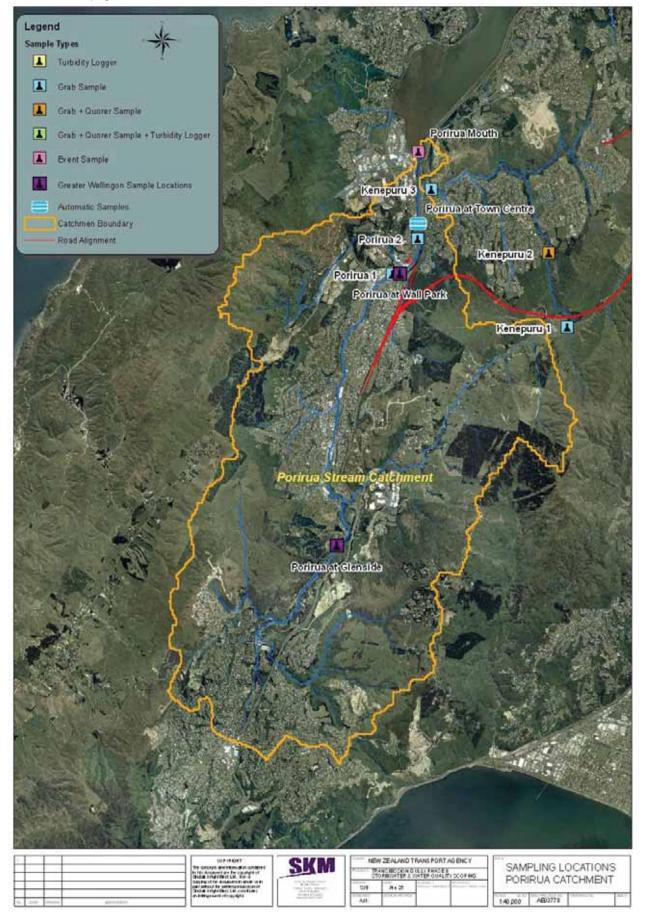
C5 - Catchment Sampling Locations - Ration Stream



C6 - Catchment Sampling Locations - Pauatahanui Stream



C7 - Catchment Sampling Locations - Duck Creek



C8 - Catchment Sampling Locations - Kenepuru Stream

C9 - Catchment Sampling Locations - Porirua Stream

Appendix 15.D Median Grab Sampling Results For All Catchments

D.1 Comparison to ecological and risk based guidelines

	Guideline										Median									
Parameter	value	Duck 1	Duck 2	Duck 3	Horokiri 1	Horokiri 2	Horokiri 3	Horokiri 5	Kenepuru 1	Kenepuru 2	Kenepuru 3	Pauatahanui 1	Pauatahanui 2	Porirua 1	Porirua 2	Ration 1	Ration 2	Te Puka 1	Te Puka 2	Whareroa 1
Temperature (C°)	3	12.4	14.2	14.3	13.3	13.0	12.5	13.1	12.1	12.1	14.7	12.6	12.9	13.1	13.9	11.6	12.0	11.2	12.7	14.3
Hd	0.5-9.0	6.9	6.2	4.8	6.4	6.5	5.8	6.2	7.3	7.4	7.3	8.9	7.1	6.1	6.2	6.5	6.5	6.0	6.5	7.2
Conductivity (µS/m)	NA A	236	256	276	171	202	258	228	238	249	254	182	173	218	212	210	214	174	250	257
Dissolved Oxygen % Saturation	98-105%	94.6	94.6	89.9	96.9	92.2	95.2	95.2	94.8	87.4	92.6	87.1	88.0	102.5	105.5	88.3	84.1	94.6	102.5	105.0
Dissolved Oxygen (g/m³)	AN	10.2	9.6	9.2	9.3	10.1	10.3	9.7	10.0	10.9	6.3	9.2	9.5	11.3	6.6	9.3	9.1	10.0	11.2	10.3
Oil or Grease Films	Presence	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scums or Foams	Presence	0	0	0	0	0	0	0	0	0	0	-	0	0.5	-	-	0	0	0	0
Floating/Suspend ed Material	Presence	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Objectionable Odour	Presence	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black disc clarity (m)	8.0		2.0	1.3	4.6	3.9	2.1	2.2		1.8	2.0	7.0	1.3	6:0	0.7	4.1	1.6	2.1	1.0	1.2
Munsell Colour	NA A	,	2	10	2	7.5	2	7.5	7.5	10	10	2	6.25	2	7.5	2	2	2	6.25	10
Turbidity (NTU)	15	0.5	4.0	5.2	1.0	1.1	2.0	1.6	8.0	3.5	13.8	5.9	4.5	7.6	8.8	3.9	4.9	0.7	2.8	3.8
Total Suspended Solids (g/m³)	NA A	3.0	5.2	5.6	3.0	3.0	3.1	3.0	3.8	8.3	12.4	12.0	3.4	7.5	6.2	3.0	3.7	3.0	4.0	3.3
Hardness Total (g/m³ as CaCO³)	09	37	35	470	27	28	34	32	36	40	38	28	59	59	30	30	33	25	33	39
Aluminium Acid Soluble (g/m³)	0.15	0.013	0.041	0.047	0.011	0.012	0.013	0.012	0.021	0.056	0.065	0.029	0.029	0.052	0.056	0.031	0.036	0.020	0.042	0.036
Dissolved Arsenic (g/m³)	0.013	0.000050	0.000050	0.00064	0.000050	0.00050	0.00050	0.00050	0.000050	0.00050	0.00063	0.00050	0.00050	0.000052	0.00054	0.000050	0.000050	0.000050	0.000050	0.00050
Total Arsenic (g/m³)	0.013	0.00053	0.00053	0.00111	0.00053	0.00053	0.00053	0.00053	0.00000	0.00061	0.00117	0.00066	0.00057	0.00081	0.00077	0.000055	0.00058	0.000053	0.00053	0.00053
Dissolved Cadmium (g/m³)	0.0002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00003	0.00001	0.00001	0.00001	0.00001	0.00001
Total Cadmium (g/m³)	0.0002	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001	0.00001	0.00005	0.00007	0.00001	0.00001	0.00001	0.00001	0.00001
Dissolved Copper (g/m³)	0.0014	0.00035	0.00044	0.00115	0.00025	0.00031	0.00054	0.00040	0.00021	0.000050	0.00215	0.00062	0.00058	0.00225	0.00255	0.00059	0.00062	0.000020	0.00042	0.00065
Total Copper (g/m³)	0.0014	0.00040	0.00092	0.00172	0.00000	0.00051	0.00081	0.00063	0.00049	0.00078	0.00305	0.00079	0.00200	0.00410	0.00395	0.00067	0.00165	0.00031	0.00076	0.00110
Dissolved Chromium (g/m³)	0.001	0.000050	0.000050	0.00050	0.000050	0.000050	0.00050	0.00050	0.000050	0.00050	0.000050	0.00050	0.00050	0.000057	0.00081	0.000050	0.000050	0.000050	0.000050	0.00050
Total Chromium (g/m³)	0.001	0.00053	0.00053	0.00097	0.00053	0.00053	0.00053	0.00053	0.00057	0.00058	0.00061	0.00053	0.00053	0.00128	0.00125	0.00053	0.00053	0.00053	0.000053	0.00053
Dissolved Lead (g/m³)	0.0034	0.00005	0.00005	0.00012	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00021	0.00008	0.00008	0.00029	0.00029	0.00000	0.00012	0.00005	0.00005	0.00005
Total Lead (g/m³)	0.0034	0.00006	0.00033	0.00045	0.00014	6000000	0.00018	0.00010	0.00021	0.00027	0.00122	0.00025	0.00025	0.00136	0.00157	0.00018	0.00041	0.00013	0.00034	0.00057
Dissolved Nickel (g/m³)	0.011	0.00030	0.00000	0.00040	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00039	0.00030	0.00030	0.00049	0.00061	0.00000	0.00000	0.00000	0.00000	0.00030
Total Nickel (g/m³)	0.011	0.00032	0.00034	0.00075	0.00032	0.00032	0.00032	0.00032	0.00032	0.00037	0.00072	0.00034	0.00037	0.00066	0.00068	0.00039	0.00039	0.00032	0.00032	0.00032
Dissolved Zinc (g/m³)	0.008	0.000050	0.00063	0.00455	0.000050	0.00106	0.00130	0.00135	0.00063	0.00081	0.00725	0.00115	0.00117	0.01400	0.01650	0.00145	0.00180	0.00068	0.00077	0.00091
Total Zinc (g/m³)	0.008	0.00056	0.00179	0.00885	0.00143	0.00132	0.00235	0.00134	0.00103	0.00167	0.01900	0.00285	0.00345	0.03550	0.04450	0.00250	0.00330	0.00105	0.00194	0.00270
Dissolved Inorganic Nitrogen (q/m³)	N A	1.12	0.67	0.18	0.1	0.28	0.1	0.275	0.3	0.55	0.43	0.011	0.011	0.261	0.25135	0.53	0.31	0.12	0.2	99.0
Total Ammoniacal Nitrogen (g/m³)	0.021	0.01	0.01	0.0135	0.01	0.01	0.01	0.01	0.01	0.012	0.068	0.01	0.01	0.012	0.0115	0.01	0.01	0.01	0.01	0.01
Total Nitrogen (g/m³)	0.614	1.33	1.2	0.84	0.36	0.535	0.78	0.705	0.745	26:0	1.185	0.635	0.575	1.5	1.55	1.26	1.165	0.215	0.37	1
Total Kjeldahl Nitrogen (g/m³)	Y Y	0.21	0.28	0.3	0.125	0.115	0.195	0.166	0.1255	0.29	0.57	0.295	0.225	0.42	0.375	0.35	0.34	0.1	0.14	0.42

SINCLAIR KINGHT MERZ

	n,
	gra.
	-6
0.0	100
12.3	100
OML P	- 10
т.	-
25110	
er y	
120	
周	ш
の地方と	ш
41.9	
en.	
-	
lad d	
850	
ю.	
100	2
re	91
	*
- 76	111
	3.1
	#I
	a
i e	2
III n	9
	B
-0	e i
	s.
	201
	6
	M
	/ <u>5</u>
	8
	100
0 ~÷	4
8	Ses.
8	ssess
	Assess
	Assess.
	5: Assess
	15; Assesu
	T 15; Assess
	ort 15: Assess
	ort 15: Assess
	port 15; Assess
	eport 15: Assess
	Report 15: Assess
Section 1979	Report 15: Assess
Sandy Barrell Barrell	al Report 15: Assess
The same of the sa	cal Report 15: Assess
中 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	nical Report 15: Assess
を とり	unical Report 15: Assess
一年 一日	chnical Report 15: Assess
を と と と と と と と と と と と と と と と と と と と	schnical Report 15: Assess
一門 大田	lechnical Report 15: Assess
一 利 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	Fechnical Report 15: Assess
	ct lechnical Report 15: Assess
一大 一	act lechnical Report 15: Assess
Sales	lect lechnical Report 15: Assess
京の大学 一大学	oject Jechnical Report 15: Assess
THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	roject lechnical Report 15: Assess
京大学 一大学	Project lechnical Report 15: Assess
新日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	Project Technical Report 15:Assess
京大学 · 大学 ·	ly Project Jechnical Report 15: Assess
京は 日本	ally Project Jechnical Report 15: Assess
京の 一	sully Project Technical Report 15: Assess
· 一大大学の一大大学の一大大学の一大大学の一大大学の一大学の一大学の一大学の一大学	Guilly Project Technical Report 15: Assess
· 一大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	n Gully Project Jechnical Report 15: Assess
· 一大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	on Gully Project Jechnical Report 15: Assess
一年 一日 一日 一日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	ion Gully Project lechnical Report 15: Assess
The state of the s	sion Guily Project lechnical Report 15: Assess
· 一大	ssion Gully Project Jechnical Report 15: Assess
· 一日 · 一日 · 一日 · 日 · 日 · 日 · 日 · 日 · 日 ·	nission Guily Project Jechnical Report 15: Assess
一年 一日 一日 一日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	mission Guily Project lechnical Report 15: Assess
京の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	smission Gully Project Jechnical Report 15: Assess
京 日本 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	nsmission Gully Project Jechnical Report 15: Assess
京 日本	ansmission Gully Project Jechnical Report 15: Assess
一年 一日 一日 一日 一日 日 日 日 日 日 日 日 日 日 日 日 日 日	ransmission Gully Project Technical Report 15: Assess
京 日本	Transmission Gully Project Jechnical Report 15: Assess
一年 一日	Transmission Guilly Project Jechnical Report 15: Assess

											10.17									
Parameter	Guideline										Mediali	Pariatahanii	Pariatahanii							
		Duck 1	Duck 2	Duck 3	Horokiri 1	Horokiri 2	Horokiri 3	Horokiri 5	Kenepuru 1	Kenepuru 2	Kenepuru 3	-	2	Porirua 1	Porirua 2	Ration 1	Ration 2	Te Puka 1	Te Puka 2	Whareroa 1
Nitrite-Nitrate Nitrogen (g/m³)	0.444	1.1	0.67	0.285	0.105	0.28	0.12	0.275	0.31	0.55	0.435	0.205	0.168	0.58	0.59	0.545	0.36	0.12	0.2	0.65
Total Phosphorus (g/m³)	0.033	0.034	0.044	0.035	600.0	0.0165	0.023	0.0175	0.0112	90.0	0.0855	0.0635	0.039	0.05	0.047	0.035	0.043	0.013	0.031	0.043
Dissolved Reactive Phosphorus (g/m³)	0.01	0.027	0.0385	0.024	0.0082	0.019	0.019	0.017	0.0108	0.033	0.023	0.025	0.022	0.025	0.023	0.022	0.023	0.0086	0.0245	0.026
Benzene (g/m³)	0.95	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Toluene (g/m³)	0.18	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Ethylbenzene (g/m³)	0.08	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
m&p-Xylene (g/m³)	0.075	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
o-Xylene (g/m³)	0.35	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Acenaphthene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Acenaphthylene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Anthracene (g/m³)	0.00005	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Benzo(a)anthrace ne (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Benzo(a)pyrene (BAP) (g/m³)	0.0008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Benzo(b)fluoranth ene + Benzo(j)fluoranth ene (g/m³)	Ϋ́	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Benzo(g,h,i)peryl ene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Benzo(k)fluoranth ene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Chrysene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.0000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Dibenzo(a,h)anthr acene (g/m³)	NA	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Fluoranthene (g/m³)	0.001	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Fluorene (g/m³)	0.003	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Indeno(1,2,3- c,d)pyrene (g/m³)	NA	<0.000008	<0.000008	0.000014	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	0.000014	0.000014	<0.000008	<0.000008	0.000014	0.000014	<0.000008	<0.000008	<0.000008
Naphthalene (g/m³)	0.05	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004
Phenanthrene (g/m³)	900000	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008
Pyrene (g/m³)	0.000025	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.000008	<0.0000008	<0.000008	<0.0000008	<0.000008	<0.000008	<0.000008

Note: Where result is outside guideline value, result is highlighted in red.

Medians have been compared to ecological, risk based and other guidelines as detailed in Appendix 15.B

D.2 Comparison to water quality guidelines for stock consumption

	a Whareroa 1	172	1.2	10	3.8	3.3	0.036	3 0.00053	1 0.00001	0.00110	3 0.00053	0.00032	4 0.00270
	Te Puka 2	167	1.0	6.25	2.8	4.0	0.042	0.00053	0.00001	0.00076	0.00053	0.00032	0.00194
	Te Puka 1	117	2.1	2	0.7	3.0	0.020	0.00053	0.00001	0.00031	0.00053	0.00032	0.00105
	Ration 2	143	1.6	2	4.9	3.7	0.036	0.00058	0.00001	0.00165	0.00053	0.00039	0.00330
	Ration 1	141	4:1	S	3.9	3.0	0.031	0.00055	0.00001	0.00067	0.00053	0.00039	0.00250
	Porirua 2	142	0.7	7.5	8.8	6.2	0.056	0.00077	0.00007	0.00395	0.00125	0.00068	0.04450
	Porirua 1	146	6.0	2	9.7	7.5	0.052	0.00081	0.00005	0.00410	0.00128	0.00066	0.03550
	Pauatahanui 2	116	1.3	6.25	4.5	3.4	0.029	0.00057	0.00001	0.00200	0.00053	0.00037	0.00345
⊑	Pauatahanui 1	122	0.7	2	5.9	12.0	0.029	0.00066	0.00001	0.00079	0.00053	0.00034	0.00285
Median	Kenepuru 3	170	0.7	10	13.8	12.4	0.065	0.00117	0.00001	0.00305	0.00061	0.00072	0.01900
	Kenepuru 2	167	1.8	10	3.5	8.3	0.056	0.00061	0.00001	0.00078	0.00058	0.00037	0.00167
	Kenepuru 1	159	,	7.5	8:0	3.8	0.021	09000:0	0.00002	0.00049	0.00057	0.00032	0.00103
	Horokiri 5	152	2.2	7.5	1.6	3.0	0.012	0.00053	0.00001	0.00063	0.00053	0.00032	0.00134
	Horokiri 3	173	2.1	2	2.0	3.1	0.013	0.00053	0.00001	0.00081	0.00053	0.00032	0.00235
	Horokiri 2	135	3.9	7.5	1.1	3.0	0.012	0.00053	0.00001	0.00051	0.00053	0.00032	0.00132
	Horokiri 1	114	9.4	S	1.0	3.0	0.011	0.00053	0.00001	0.00060	0.00053	0.00032	0.00143
	Duck 3	185	1.3	10	5.2	5.6	0.047	0.00111	0.00001	0.00172	0.00097	0.00075	0.00885
	Duck 2	172	2.0	2	4.0	5.2	0.041	0.00053	0.00001	0.00092	0.00053	0.00034	0.00179
	Duck 1	158	,		0.5	3.0	0.013	0.00053	0.00001	0.00040	0.00053	0.00032	0.00056
Livestock	Drinking Water Guideline	2000	0.8	NA	5.6	AN A	r2	0.5	0.01	0.5	-	-	20
	Parameter	Total Dissolved Solids (g/m³)	Black disc clarity (m)	Munsell Colour	Turbidity (NTU)	Total Suspended Solids (g/m³)	Aluminium Acid Soluble (g/m³)	Total Arsenic (g/m³)	Total Cadmium (g/m³)	Total Copper (g/m³)	Total Chromium (g/m³)	Total Nickel (g/m³)	Total Zinc (g/m³)

Appendix 15.E Event Sampling Results

E1 - Event Samples - Medians

Site name	Т	urbidity (g/m	³)		TSS (g/m³)	
Site Hame	Median	Min	Max	Median	Min	Max
Duck Mouth	18	3	430	18	5	490
Horokiri Mouth	15	1	66	20	3	68
Pauatahanui Mouth	20	3	240	28	7	220
Porirua Mouth	89	9	590	95	15	450
Ration Mouth	24	3	240	39	6	250

E2 - Event samples - all results

Site Name	Date/Time	Turbidity (NTU)	Total Suspended Solids (g/m³)	Flow (m³/s)	Flow gauge
Duck Mouth	9/10/2009 9:10	160	170	-	
Duck Mouth	16/10/2009 11:20	430	490	-	
Duck Mouth	29/12/2009 10:22	8	5	-	
Duck Mouth	16/01/2010 9:00	5	8	-	None on stream
Duck Mouth	28/04/2010 9:55	20	16	-	None on stream
Duck Mouth	15/05/2010 9:00	3	20	-	
Duck Mouth	25/05/2010 9:53	65	79	-	
Duck Mouth	26/05/2010 9:20	16	14	-	
Horokiri Mouth	9/10/2009 9:20	66	68	2.41	
Horokiri Mouth	16/10/2009 15:20	45	58	3.30	
Horokiri Mouth	29/12/2009 9:50	5	21	1.39	
Horokiri Mouth	16/01/2010 9:30	1	3	0.32	Horokiri Stream at
Horokiri Mouth	28/04/2010 10:10	13	10	0.58	Snodgrass
Horokiri Mouth	15/05/2010 9:20	2	5	0.18	
Horokiri Mouth	25/05/2010 10:20	22	65	1.12	
Horokiri Mouth	26/05/2010 9:50	17	19	1.69	
Pauatahanui Mouth	9/10/2009 9:20	240	220	6.83	
Pauatahanui Mouth	16/10/2009 15:40	140	120	5.64	
Pauatahanui Mouth	29/12/2009 10:00	3	12	0.77	
Pauatahanui Mouth	16/01/2010 9:10	4	7	0.26	Pauatahanui Stream at
Pauatahanui Mouth	28/04/2010 10:30	48	53	0.56	Gorge
Pauatahanui Mouth	15/05/2010 9:30	3	35	0.17	
Pauatahanui Mouth	25/05/2010 10:00	16	17	1.30	
Pauatahanui Mouth	26/05/2010 9:30	24	21	2.51	
Porirua Mouth	9/10/2009 9:00	140	140	3.59	
Porirua Mouth	16/10/2009 12:30	590	450	9.15	Porirua Stream at Town Centre
Porirua Mouth	29/12/2009 9:30	12	15	1.13	

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

Site Name	Date/Time	Turbidity (NTU)	Total Suspended Solids (g/m³)	Flow (m³/s)	Flow gauge
Porirua Mouth	16/01/2010 8:40	9	29	2.23	
Porirua Mouth	28/04/2010 9:40	95	100	0.29	
Porirua Mouth	15/05/2010 8:30	13	15	0.94	
Porirua Mouth	25/05/2010 9:40	82	160	6.68	
Porirua Mouth	26/05/2010 9:00	96	89	4.47	
Ration Mouth	9/10/2009 9:25	240	250	-	
Ration Mouth	16/10/2009 15:25	60	60	-	
Ration Mouth	29/12/2009 9:56	5	32	-	
Ration Mouth	16/01/2010 9:20	4	6	-	None on stream
Ration Mouth	28/04/2010 10:05	49	117	-	None on stream
Ration Mouth	15/05/2010 9:10	3	42	-	
Ration Mouth	25/05/2010 10:25	26	35	-	
Ration Mouth	26/05/2010 9:50	21	17	-	

Appendix 15.F Automatic Sampling Results

		"Beginning o	Beginning of Stom" sample							"Composite" sample	ample					
Site name	Date	Time	Rainfall previous 24 hours (mm)	Turbidity (NTU)	Total Suspended Solids (g/m³)	Dissolved Zinc (g/m³)	Total Zinc (g/m³)	Dissolved Copper (g/m³)	Total Copper (g/m³)	Time	Turbidity (NTU)	Total Suspended Solids (g/m³)	Dissolved Zinc (g/m³)	Total Zinc (g/m³)	Dissolved Copper (g/m³)	Total Copper (g/m³)
Guideline value				9	NA	0.008	0.008	0.0014	0.0014		9	NA	0.008	0.008	0.0014	0.0014
Horokiri Stream at Snodgrass	13/04/2010	23:05:00	7.5	-	6	0.006	0.009	0.0007	0.0008	01:05:00	2	8	0.003	0.004	0.0007	0.0007
Horokiri Stream at Snodgrass	27/04/2010	17:50:00	20.0	240	370	0.005	0.045	0.0038	0.0107	19:50:00	370	610	0.002	0.058	0.0018	0.0134
Horokiri Stream at Snodgrass	25/05/2010	00:00:00	25.5	21	21	0.002	0.008	0.0011	0.0018	11:05:00	42	56	0.003	0.011	0.0015	0.0029
Horokiri Stream at Snodgrass	25/05/2010	18:20:00	37.0	93	124	0.003	0.006	0.0016	0.0021	20:20:00	161	200	0.003	0.027	0.0016	090000
Horokiri Stream at Snodgrass	6/06/2010	09:35:00	12.0	2	0	0.004	0.006	0.0005	60000.0	11:35:00	3	9	0.003	0.004	0.0007	0.0009
Horokiri Stream at Snodgrass	11/06/2010	03:20:00	8.5	7	4	0.002	0.004	0.0007	0.0018	05:20:00	10	11	0.002	0.003	0.0006	600000
Pauatahanui Stream at Gorge	24/03/2010	15:05:00	No data	1	5	0.006	0.010	0.0005	900000	17:05:00	1	3	90000	0.009	0.0008	0.0011
Pauatahanui Stream at Gorge	13/04/2010	23:05:00	7.5	1	80	0.002	0.003	0.0006	0.0005	01:05:00	2	8	0.003	0.003	0.0005	0.0005
Pauatahanui Stream at Gorge	24/05/2010	22:05:00	14.5	25	22	0.004	0.010	0.0013	0.0020	02:02:00	16	18	0.011	0.024	0.0034	0.0051
Porirua Stream at Town Centre	24/03/2010	15:15:00	5.0	1	8	0.023	0.033	0.0057	0.0081	17:15:00	2	3	0.021	0.032	0.0043	9900'0
Porirua Stream at Town Centre	13/04/2010	22:05:00	2.5	15	25	0.033	0.056	0.0040	0.0054	00:02:00	42	73	0.029	0.107	0.0052	0.0120
Porirua Stream at Town Centre	27/04/2010	17:35:00	7.0	240	370	0.016	0.210	0.0037	0.0240	19:35:00	193	270	0.027	0.280	0.0043	0.0280
Porirua Stream at Town Centre	16/05/2010	17:05:00	5.5	9	15	0.011	0.019	0.0022	0.0029	19:05:00	80	4	0.015	0.023	0.0030	0.0034
Porirua Stream at Town Centre	25/05/2010	16:20:00	45.0	310	400	0.012	0.163	0.0028	0.0186	18:20:00	980	1360	0.010	0.290	0.0033	0.0370
Porirua Stream at Town Centre	28/05/2010	00:00:90	18.0	8	8	0.023	0.026	0.0021	0.0020	08:00:80	8	4	0.019	0.020	0.0020	0.0020
Porirua Stream at Town Centre	6/06/2010	08:35:00	0.9	42	45	0.009	0.037	0.0017	0.0045	10:35:00	91	138	0.013	0.073	0.0022	0.0085
Porirua Stream at Town Centre	14/06/2010	02:50:00	4.0	7	10	0.008	0.011	0.0013	0.0014	04:50:00	4	4	0.012	0.015	0.0015	0.0017

Note: Where result is outside guideline value, result is highlighted in red.

Appendix 15.G Quorer Sampling Results

Site name	Median Areal SIS (g/m²)	Volumetric SIS (g/m³)	Median Areal SOS (g/m²)	Volumetric SOS (g/m³)	Visual assessment % fine sediment
Duck 2	3661	5905	323	682	18.9
Horokiri 3	751	9217	81	1292	0.1
Kenepuru 2	2884	24451	357	3089	12.1
Pauatahanui 2	2649	8601	215	861	9.75
Porirua 2	2980	14005	287	2196	57.25
Ration 2	9628	14687	1237	1610	77.6

GWRC Median State of the Environment Water Quality Data Appendix 15.H

154 74 143 153 -

		Porirua	Porirua Stream at Milk Depot (i.e Wall Par	Depot (i.e., Wall	Park)	Porirua	Porirua Stream at Glenside Overhead Cables	side Overhead	Cables	H	Horokiri Stream at Snodgrass	Snodgrass			Horokiri Stream at Ongly	at Ongly	
Parameter	Guideline value	Median	95th percentile	5th percentile	Count	Median	95th percentile	5th percentile	Count	Median	95th percentile	5th percentile	Count	Median	95th percentile	5th percentile	Coun
Temperature (C°)	က	12.7	18.7	7.8	223	12.3	18.0	7.5	221	14.7	19.5	6.7	88	12.4	17.7	7.7	154
Dissolved Oxygen % Saturation	98-105%	105.0	127.3	92.6	148	104.0	129.7	93.3	148	100.5	116.0	92.8	88	101.0	116.4	93.0	74
Conductivity (µS/m)	A/N	253.0	281.5	183.5	211	252.0	285.2	177.2	500	183.5	205.7	155.2	88	181.0	201.0	149.0	143
Нф	6.5-9.0	7.6	8.5	7.1	221	7.7	8.9	7.1	219	7.4	7.9	6.9	98	7.3	7.7	7.0	153
Turbidity (NTU)	15	5.9	38.4	1.4	223	2.5	48.0	6.0	221	1.2	8.7	0.4	88	6.0	11.7	0.4	154
Black Disc Clarity (m)	8.0	1.5	3.0	0.2	148	1.7	3.6	0.1	146	2.2	4.3	0.5	88	2.7	4.5	9.0	74
Munsell Colour	NA	S	10	2.5	74	2	10	2.5	74	2	10	2.5	74				
Total Suspended Solids (g/m³)	NA	4.3	77.77	2.4	10	3.2	130.0	2.1	1	3.6	20.4	2.4	7				•
Nitrite-Nitrate Nitrogen (g/m³)	0.444	1.02	1.77	0.47	73	1.11	1.89	0.53	74	0.43	66.0	0.05	74				•
Total Ammoniacal Nitrogen (g/m³)	0.021	0.04	0.24	0.01	89	0.03	0.17	0.01	49	0.01	0.05	0.01	59	0.08	0.08	0.08	-
Dissolved Inorganic Nitrogen (g/m³)	NA	1.03	1.95	0.49	73	1.12	1.98	0.54	74	0.45	1.00	0.05	74				'
Total Kjeldahl Nitrogen (g/m³)	A	0:30	1.11	0.12	29	0:30	0.71	0.13	89	0.17	0.31	0.10	63				•
Total Nitrogen (g/m³)	0.614	1.31	2.46	0.59	100	1.30	2.35	0.74	100	09:0	1.20	0.18	88	99.0	1.53	0.17	26
Dissolved Reactive Phosphorus (g/m³)	0.01	0.02	0.04	0.01	141	0.02	0.04	0.01	150	0.01	0.02	0.01	79	0.01	0.02	0.01	44
Total Phosphorus (g/m³)	0.033	0.04	0.11	0.01	86	0.03	0.11	0.01	86	0.02	0.05	0.01	87	0.01	0.13	0.01	17
Hardness Total (g/m³ as CaCO³)	09	41.0	47.5	34.8	12	37.5	47.6	33.0	12	28.0	31.5	23.1	12			,	'
Dissolved Arsenic (g/m³)	0.013	<0.00100	<0.00100	<0.00100	18	0.002	0.002	0.002	-	<0.00100	<0.00100	<0.00100	12				'
	Guideline	Paua	Pauatahanui Stream at Elmwood Bridge	at Elmwood Bri	əğp		Whareroa Stream at QE Park	ım at QE Park		Wha	Whareroa Stream at Waterfall Rd	Waterfall Rd					
Parameter	value	Median	95th percentile	5th percentile	Count	Median	95th percentile	5th percentile	Count	Median	95th percentile	5th percentile	Count				
Temperature (C°)	8	13.1	18.8	9.7	148	14.6	19.0	9.2	74	11.9	15.7	7.2	65				
Dissolved Oxygen % Saturation	98-105%	95.3	111.0	82.4	148	7.1.7	94.3	50.4	74	2.96	108.0	86.2	65				
Conductivity (µS/m)	N/A	178.0	204.0	151.4	137	273.0	317.9	211.9	74	237.0	268.2	176.8	65				
Н	6.5-9.0	7.3	8.1	7.0	146	8.9	7.2	6.2	72	7.6	7.9	7.2	63				
Turbidity (NTU)	15	2.6	17.6	1.1	148	8.9	20.3	3.8	74	4.8	48.5	2.5	65				
Black Disc Clarity (m)	8.0	1.6	3.4	0.2	145	0.5	1.1	0.2	73	0.7	1.5	0.1	65				
Munsell Colour	Ϋ́	5	10	2.5	74	2	10	2.5	73	7.5	10	2.5	92				
Total Suspended Solids (g/m³)	ΑN	3.2	70.0	2.1	7	4.3	13.0	2.6	21	3.3	24.0	2.5	16				
Nitrite-Nitrate Nitrogen (g/m³)	0.444	0.25	0.64	0.02	72	0.35	1.15	90.0	74	0.36	0.71	0.13	65				
Total Ammoniacal Nitrogen (g/m³)	0.021	0.02	0.07	0.01	51	0.11	0.27	0.03	71	0.02	0.08	0.01	19				
Dissolved Inorganic Nitrogen (g/m³)	NA	0.28	99.0	0.02	74	0.48	1.22	0.08	74	0.37	0.71	0.14	65				
Total Kjeldahl Nitrogen (g/m³)	ΑN	0.22	0.52	0.14	72	0.64	1.01	0.40	74	0.20	0.55	0.11	22				
Total Nitrogen (g/m³)	0.614	0.57	1.10	0.20	100	1.00	1.92	0.51	74	0:20	1.29	0.23	65				
Dissolved Reactive Phosphorus (g/m³)	0.01	0.02	0.03	0.01	26	0.04	90.0	0.02	74	0.03	0.05	0.02	65				
Total Phosphorus (g/m³)	0.033	0.03	0.08	0.01	66	60.0	0.14	0.05	74	0.05	0.12	0.03	65				
Hardness Total (g/m³ as CaCO³)	09	27.5	34.5	20.7	12	60.5	80.5	46.2	12	38.0	46.9	27.6	12				
Dissolved Arsenic (g/m³)	0.013	<0.00100	<0.00100	<0.00100	12	0.0011	0.0011	0.0010	4	<0.00100	<0.00101	<0.00102	12				
Note: Where result is outside guideline value, result is highlighted in red	ine value, res	sult is highligh	ited in red.														

SINCLAIR KINGHT MERZ

PAGE 222

Appendix 15.I Turbidity Logger Data

I.1 Installation and Location of Loggers

The following details installation dates and the location of loggers installed on Duck Creek, the Horokiri Stream and the Pauatahanui Stream. Loggers were placed at or near freshwater sampling sites as detailed in Section 6.2.2. All loggers were installed between 19 October 2009 and 28 October 2009. All loggers were removed on 29 September 2010. Data was edited to remove erroneous sections of data, and an edited data set was used as part of the sediment yield analysis – as detailed in Section 10.

Horokiri 3

Horokiri 3 was installed on 28 October 2009. The original logger only recorded data to a maximum value of 400 NTU. It is likely that the logger was not recording higher turbidity values. Hence, a logger that records up to 1000 NTU was installed on 10 December 2009. We moved the logger further downstream (approximately 3 metres) on 21 December 2009 as the original location was producing erratic results. The flow at this site is not affected by an eddy and is more representative of the stream flow. We have therefore discounted data collected before 21 December 2009 (**Figure I.1**). The logger was removed from the Horokiri 3 site on 29 September 2010.

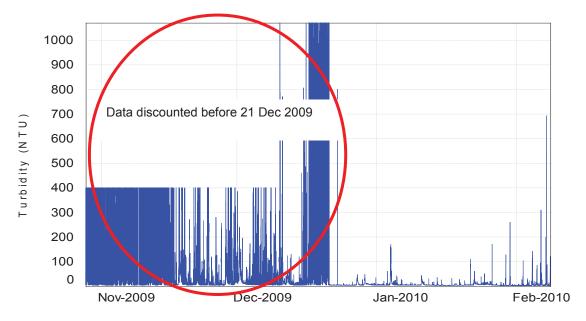


Figure I.1 Recorded Continuous Turbidity at Horokiri 3

Horokiri 4

A logger was installed at Horokiri 4 on 19 October 2009. Similarly to the Horokiri 3 site, this logger only recorded turbidity values up to 400 NTU. It is likely that the logger was not recording higher turbidity values. A new logger which records up to 1000 NTU was installed on 10 December 2009 (**Figure I.2**). The logger was removed from Horokiri 4 on 29 September 2010.

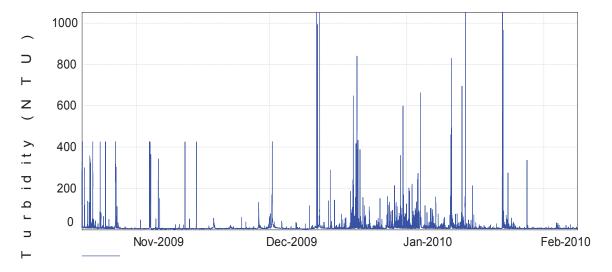


Figure I.2 Recorded Continuous Turbidity at Horokiri 4

Pauatahanui 2

A turbidity logger was installed at Pauatahanui 2 about 50 metres upstream of the sampling location on 28 October 2009. Erratic data was recorded in the first month of installation (**Figure I.3**). Turbidity data was compared to NIWA's gauged flow record which is recorded upstream of Pauatahanui 2. Some peaks in turbidity seem to be correlated with high flow. The erratic data recorded in the first month of recording did not seem to correlate with flow peaks, so this data was removed from the analysis. It should be noted that excavation to widen the streambed and reduce flooding on an adjacent property was being carried out upstream of the gauge for some of the time the logger was in place. It is understood this work started in January 2010 and took several months. These works may have had an impact on sediment loads further downstream (ie. At Pauatahanui 2).

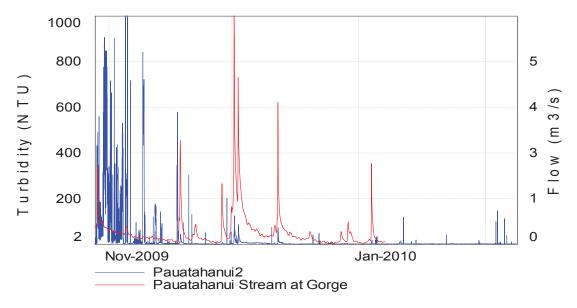


Figure I.3 Recorded Turbidity at Pauatahanui 2 and Flow at Pauatahanui at Gorge

Duck 2

The turbidity logger was installed at Duck 2 on 28 October 2009, about 20 metres upstream of the freshwater sampling location. The logger was removed on 29 September 2010. Data collected at this site was not edited significantly.

I.2 Turbidity Data

Table I.1 details calculated means and medians of turbidity data collected from the four loggers placed in Duck Creek, Horokiri Stream (two) and Pauatahanui Stream. Means and medians have been calculated from the beginning of reliable data collection to their removal from the streams on 29th September 2010.

Table I.1 Turbidity Mean and Median from Four Loggers

Site name	Data length	Turbidity (NTU)
One name	Bata length	Mean	Median
Duck 2	28/10/09 - 29/09/10	13.8	8.1
Horokiri 3	22/12/09 - 29/09/10	20.5	4.9
Horokiri 4	11/12/09 - 29/09/10	18.4	7.6
Pauatahanui 2	18/11/09 - 29/09/10	21.9	2.6

Appendix 15.J Methodology for Spot Flow Calculations

Flows also measured at un-gauged sample stream locations when simultaneous TSS and turbidity data was collected. The following methodology was employed to calculate spot discharge:

- A current meter was used to measure stream velocities at several points along a cross-section of the stream. This was at the same location where the grab samples were collected. The current meter observed revolutions of a small propeller for at least 60 seconds at each point. The revolutions and time were recorded, along with the water depth and distance from the stream bank at each location.
- At each site, cross sectional details including stream width and depth dimensions were recorded.
- The cross sectional area was calculated.
- The velocity was calculated using the following equation:

Where k = slope propeller

n = pulses (i.e. Revolutions per second)

c = propeller constant

Discharge was calculated by multiplying the cross sectional area and velocity together

Appendix 15.K The Soil Moisture Water Balance Model

K.1 Introduction

The Transmission Gully Highway will be located between Paraparaumu and Wellington to:

- Improve regional network security;
- Assist in remedying safety concerns and projected capacity problems on the existing State Highway 1;
- Assist in enabling wider economic development by providing a route that improves through movement of freight and people; and
- Assist in the integration of the land transport system by enabling the existing State Highway 1 to be developed into a safe and multi-functional alternative to the proposed new strategic link.

Daily streamflow time series are required as input to hydraulic models that will be used to assess movement of sediment in the streams.

Four gauged catchments identified in are located in the project area, namely:

- Porirua Stream at Town Centre:
- Pauatahanui Stream at Gorge;
- Horokiri at Grenlo and Snodgrass; and
- Wainui Stream above Kapiti Coast District Council offtake.

The records for the Porirua and Pauatahanui gauges are 28 and 32 years long respectively, but contain significant periods of missing data. The Horokiri record is only 5 years long and the Wainui record only 5 months long. The gauges also only command part of the catchments where streamflow time series are required.

Rainfall-runoff models are available that can be calibrated to generate synthetic streamflow from catchment rainfall. Confidence in the synthetic streamflow time series depends on the length of period(s) with overlapping observed streamflow and rainfall data, accuracy of the observed flow record and representativeness of the rainfall data to catchment rainfall.

The spatial distribution of rainfall stations in the project area with suitable records is poor. However, the National Institute of Water and Atmospheric (NIWA) have developed a grid of historic rainfall time series for the whole of New Zealand at approximately 5 km grid spacing. These grid rainfall time series span the period 1960 to date and provide suitable daily rainfall data for input to a rainfall-runoff model.

This report describes generation of daily average streamflow time series for input to a sediment model using the Soil Moisture Water Balance Model (SMWBM).

K.2 SMWBM

The SMWBM is a conceptual lumped parameter soil moisture water balance model that is designed to simulate both surface runoff and groundwater discharge from catchments. It has four primary and eight secondary parameters that can be adjusted until simulated flows correspond acceptably with observed flows. These parameters are listed in Table K1 together with brief descriptions.

Table K1 SMWBM Parameters

Parameter	Description	Unit
Primary parameters		
ST	Soil moisture storage capacity	mm
FT	Maximum soil drainage rate	mm/day
Zmax	Maximum infiltration rate	mm/hr
PI	Interception storage capacity	mm
Secondary parameters	5	
Al	Impervious portion of the catchment	Ratio
Zmin	Minimum infiltration rate	mm/hr
R	Soil evaporation equation option	0, 1, 10
DIV	Proportion of infiltration excess to eventually infiltrate as groundwater rather than surface water	0 – 1
TL	Surface routing coefficient	days
GL	Groundwater recession parameter	days
LAG	Catchment flow lag	days
POW	Power in soil moisture percolation curve equation	1 - 2
SL	Soil moisture storage when soil drainage ceases	mm

Model parameters are determined for the gauged catchments taking physical attributes of the catchments into consideration. These parameters can then be transposed to the ungauged catchments on the basis of the similarity of these catchments to the gauged catchments.

The modelling methodology was as follows:

- Determine the area and primary characteristics (i.e. land use, slope, soils) for each gauged and ungauged catchment
- Identify representative rainfall time series for each catchment from available rainfall data

- Set up the SMWBM for the gauged catchments
- Adjust model parameters until the simulated streamflow corresponds suitably with the observed streamflow
- Transpose model parameters to the ungauged catchments
- Set up the SMWBM for the ungauged catchments
- Generate synthetic daily average streamflow time series for the period of rainfall data for all catchments.

K.3 Generation of Streamflow Time Series

This section describes the collection of data, set up and calibration of the SMWBM and generation of the required streamflow time series for input to the sediment model.

K.3.1 Catchment Definition

Data for four gauged catchments were used to calibrate the SMWBM to determine model parameters that were used as input to generate daily average streamflow time series for 25 catchments in the project area. These gauged catchments are listed in Table K2 and the ungauged catchments in Table K3 together with relevant attributes. The location of the catchments is shown in **Figure K.1**.

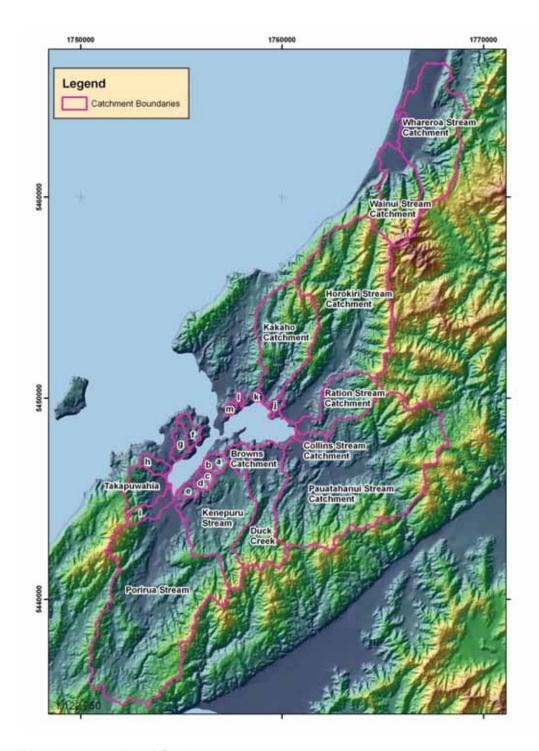
Table K.2 Summary of Gauged Catchments

Catchment	Area (km²)	MAP (mm)	Period of Record	Primary Land Use	Catchment Slope
Porirua Stream at Town Centre	40.30	1215	Aug 1982 to Oct 2009	40% Agricultural 20% Forest 30% Urban 10% Scrub	Moderate
Pauatahanui Stream at Gorge	38.27	1251	Oct 1978 to Sep 2009	60% Agricultural 25% Forest 15% Scrub	Moderate
Horokiri Stream at Snodgrass	28.69	1313	Mar 2002 to Mar 2006	45% Agricultural 35% Forest 20% Scrub	Moderate
Wainui above KCDC Offtake	1.83	1348	Jan 1999 to May 1999	85% Forest 10% Agricultural 5% Scrub	Steep

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

				40% Agricultural		
Porirua Stream at Town	40.30	1215	Aug 1982 to Oct	20% Forest	Moderate	
Centre	40.50	1213	2009	30% Urban	Moderate	
				10% Scrub		

Table K3 Summary of Ungauged Catchments


	Area	MAP		
Catchment	(km²)	(mm)	Primary Land Use	Catchment Slope
Browns Catchment	1.35	1097	25% Forest 5% Agricultural 60% Urban 10% Scrub	Moderate
Collins Stream Catchment	0.64	1192	5% Urban 95% Agricultural	Flat
Duck Creek Catchment	10.30	1164	20% Forest 15% Urban 10% Scrub 55% Agricultural	Moderate
Horokiri Stream Catchment	33.06	1303	50% Agricultural 15% Scrub 35% Forest	Moderate – Steep (upper catchment)
Kakaho Catchment	12.46	1208	15% Scrub 65% Agricultural 20% Forest	Moderate
Kenepuru Stream Catchment	12.66	1147	10% Forest 40% Urban 35% Agricultural 15% Scrub	Flat – moderate (upper catchment)
Pauatahanui Stream Catchment	41.68	1243	60% Agricultural 2% Urban 23% Forest 15% Scrub	Moderate
Porirua Stream Catchment	41.08	1211	30% Urban 20% Forest 40% Agricultural 10% Scrub	Flat – moderate (upper catchment)
Ration Stream Catchment	6.80	1295	4% Scrub 55% Forest 40% Agricultural 1% Urban	Moderate
Takapuwahia Catchment	3.47	1011	50% Forest	Moderate

Catchment	Area (km²)	MAP (mm)	Primary Land Use	Catchment Slope
			5% Scrub 25% Urban 20% Agricultural	
Wainui Stream Catchment	8.31	1306	65% Forest 3% Urban 2% Scrub 30% Agricultural	Steep
Whareroa Stream Catchment	15.72	1293	20% Forest 70% Agricultural 9% Scrub 1% Urban	Steep upper – flat lower
Catchment A	0.64	1076	20% Forest 10% Agricultural 70% Urban	Moderate
Catchment B	0.29	1072	3% Agricultural 90% Urban 7% forest	Moderate
Catchment C	0.41	1074	20% Forest 50% Urban 5% Scrub 25% Agricultural	Moderate
Catchment D	0.45	1074	10% Scrub 50% Agricultural 15% Forest 20% Urban	Moderate
Catchment E	0.58	1068	60% Agricultural 10% Urban 15% Forest 10% Scrub	Moderate
Catchment F	0.98	1035	30% Scrub 5% Forest 60% Agricultural 5% Urban	Flat

Catchment	Area (km²)	MAP (mm)	Primary Land Use	Catchment Slope
Catchment G	1.11	1026	10% Agricultural 80% Urban 10% Forest	Flat
Catchment H	1.01	1003	10% Forest 10% Agricultural 35% Urban 45% Scrub	Moderate
Catchment I	1.60	1050	50% Forest 50% Urban	Moderate
Catchment J	0.41	1168	5% Forest 90% Agricultural 5% Urban	Moderate
Catchment K	0.25	1134	5% Forest 95% Agricultural	Moderate
Catchment L	0.25	1098	20% Scrub 65% Agricultural 5% Forest 10% Urban	Moderate
Catchment M	0.25	1084	20% Forest 80% Urban	Moderate

Figure K.1 Location of Catchments

K.3.2 Selection of Rainfall Time Series

Rainfall time series are the primary input to the SMWBM. The rainfall time series must be representative of average rainfall on the catchment to accurately simulate historic flows. Four rainfall stations were identified as potential candidates for representing rainfall over the gauged catchments. These stations are listed in **Table K.4** and their locations together with the gauged catchments are shown in **Figure K.2**.

Table K.4 Potential Rainfall Stations for Input to the SMWBM

Name	Period of Record
Putaputaweta at Whakatiki	1986-1992
Blue Gum Spur at Whakatiki	1981 to date
Moonshine at Pauatahanui	1975 to 1994
Whenua Tapu at Taupo	1991 to date
Putaputaweta at Whakatiki	1986-1992

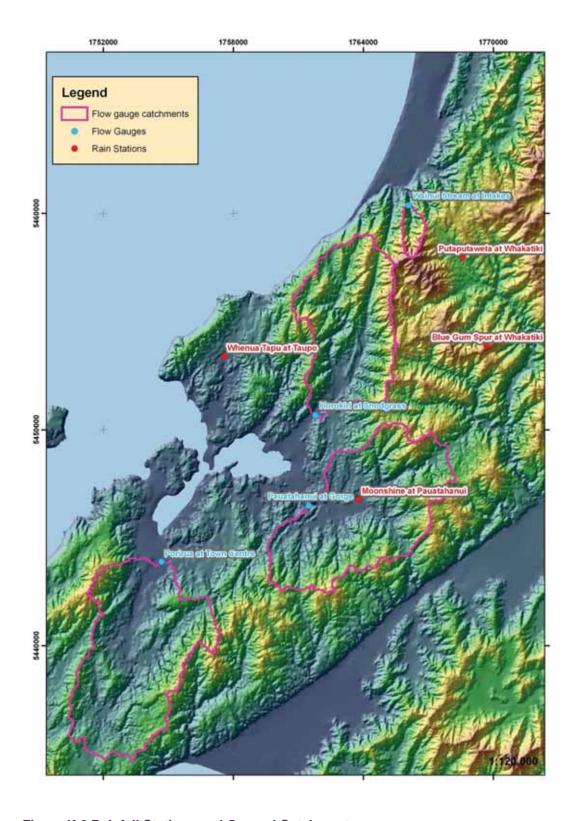


Figure K.2 Rainfall Stations and Gauged Catchments

Transmission Gully Project Technical Report 15:

Assessment of Water Quality Effect

Inspection of **Figure K.2** shows that, of the four gauged streams, only the Pauatahanui Stream has a rainfall station located within the catchment that could potentially be used to represent catchment rainfall in SMWBM.

NIWA have developed a model and used it to generate daily rainfall time series from 1960 to date at a 5 km grid spacing for the whole of New Zealand. These data for the study area were downloaded from the NIWA website. The grid point locations together with their reference numbers and mean annual precipitation (MAP) isohyets are shown in **Figure K.3** and are summarised in **Table K.4**.

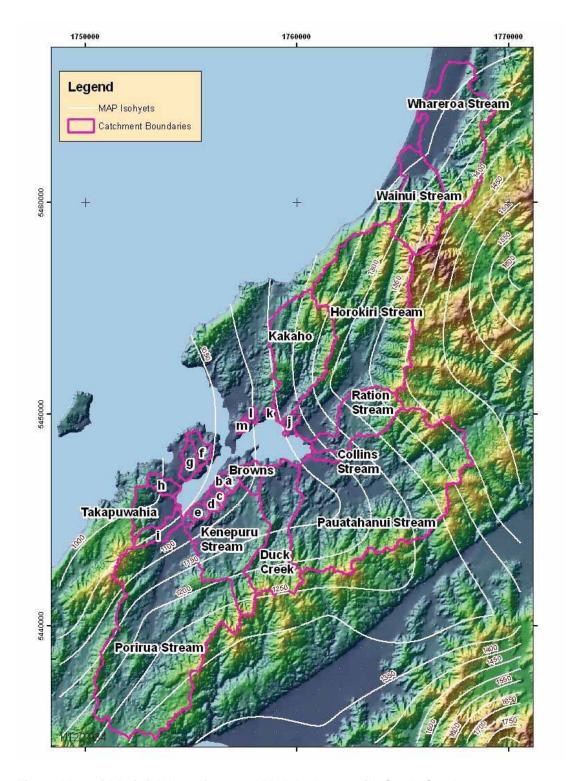


Figure K.3 Grid Rainfall Locations and MAP Isohyets with Study Catchments

Table K.4 Summary of Grid Rainfall Time Series in the Study Area

Grid	Location	า		
reference	Latitude	Longitude		
30212	-40.975	174.975	1250	
28128	-41.025	174.925	1231	
28632	-41.025	174.975	1379	
27593	-41.075	174.875	1084	
27059	-41.075	174.925	1311	
30765	-41.075	174.975	1424	
27590	-41.125	174.825	993	
29144	-41.125	174.875	1102	
27607	-41.125	174.925	1132	
28134	-41.125	174.975	1266	
29677	-41.175	174.825	1215	
30196	-41.175	174.875	1283	
29694	-41.175	174.925	1310	
27069	-41.175	174.975	1268	
27042	-41.225	174.825	1324	
30195	-41.225	174.875	1361	
30748	-41.225	174.925	1356	
28133	-41.225	174.975	1440	

A grid rainfall time series was allocated to represent the pattern of catchment rainfall for each of the catchments. Stations were selected on the basis of proximity and similarity of MAP. Interpolating rainfall for a catchment from the data for two or more grid time series was not carried out because this tends to generate a smoothed rainfall time series. Rather, the data from the selected grid time series was scaled according to the ratio of catchment and grid record MAP. **Table K.5** lists the catchments and selected grid time series together with their MAPs and factor used to adjust rainfall for input to the SMWBM.

Table K.5 Summary of Catchments and Grid Rainfall Stations

Catchment	MAP	Grid Ref. Time series	Grid MAP	Factor
Porirua Stream at Town Centre	1215	29677	1215	1.00
Pauatahanui Stream at Gorge	1251	28134	1266	0.99
Horokiri Stream at Grenlo	1313	27059	1311	1.00
Wainui above KCDC Offtake	1348	28632	1379	0.98
Browns Catchment	1097	29144	1102	1.00
Collins Stream Catchment	1192	27607	1132	1.05
Duck Creek Catchment	1164	27607	1132	1.03
Horokiri Stream Catchment	1303	27059	1311	0.99
Kakaho Catchment	1208	28128	1231	0.98
Kenepuru Stream Catchment	1147	29144	1102	1.04
Pauatahanui Stream Catchment	1243	28134	1266	0.98
Porirua Stream Catchment	1211	29677	1215	1.00
Ration Stream Catchment	1295	27059	1311	0.99
Takapuwahia Catchment	1011	27590	993	1.02
Wainui Stream Catchment	1306	28632	1379	0.95
Whareroa Stream Catchment	1293	30212	1250	1.03
Duck Creek 2	1170	27607	1132	1.03
Horokiri 3	1300	28128	1231	1.06
Horokiri 4	1350	28632	1379	0.98
Catchment A	1076	29144	1102	0.98
Catchment B	1072	29144	1102	0.97
Catchment C	1074	29144	1102	0.97
Catchment D	1074	29144	1102	0.97
Catchment E	1068	29144	1102	0.97
Catchment F	1035	27590	993	1.04
Catchment G	1026	27590	993	1.03
Catchment H	1003	27590	993	1.01

Catchment	MAP	Grid Ref. Time series	Grid MAP	Factor
Catchment I	1050	27590	993	1.06
Catchment J	1168	27593	1084	1.08
Catchment K	1134	27593	1084	1.05
Catchment L	1098	27593	1084	1.01
Catchment M	1084	27593	1084	1.00

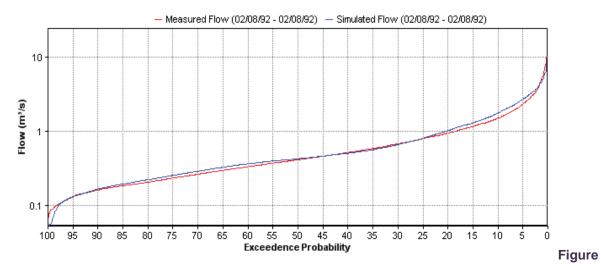
K.3.3 Model Calibration

The SMWBM was set up and calibrated using the data for the four gauged catchments. Calibration was based on comparison of the daily observed and simulated hydrographs and flow duration curves. The comparison of the simulated and observed hydrographs as shown for the Horokiri gauge in **Figure K.4**, showed that for some events the simulated streamflow compared well with observed, but for many events the comparison was poor. This indicates that the selected rainfall time series do not accurately represent catchment rainfall for all events.

Figure K.4 Horokiri Stream: Observed and Simulated Hydrographs

Comparison of the flow duration curves generated from the observed and simulated flows showed good comparison for the Porirua, Pauatahanui and Horokiri catchments (**Figure K.5** to **Figure K.7** respectively) and poor result for the very short Wainui gauge (**Figure K.8**).

This shows that even though the simulations do not correlate well with all the historic events, overall the simulated time series are representative of flow at the gauges. Without more representative rainfall data for the catchments it is not possible to accurately simulate historic streamflow. Accordingly calibration of the soil moisture water balance mode concentrated on the comparison between observed and simulated flow duration curves.


The observed record for the Wainui gauge is only 5 months long. Over this very short period the simulated and observed flow duration curves do not correspond very well and the model parameters were selected on the basis of comparison of the hydrographs.

The adopted model parameters for the four catchments are listed in **Table K.6**.

Table K.6 SMWBM Calibration Parameters

Catchment	ST (mm)	FT (mm/day)	Zmax (mm/hr)	PI (mm)	Al	GL	POW
Porirua	250	1.2	5	2	0.16	1	1
Pauatahanui	200	1.2	5	2	0	1	1
Horokiri	250	1.5	5	1	0	1	2
Wainui	250	1.5	8	1	0	1	1

K.5 Porirua Stream: Observed and Simulated Flow Duration Curves

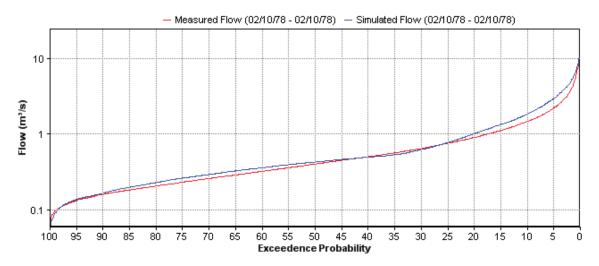


Figure K.6 Pauatahanui Stream: Observed and Simulated Flow Duration Curves

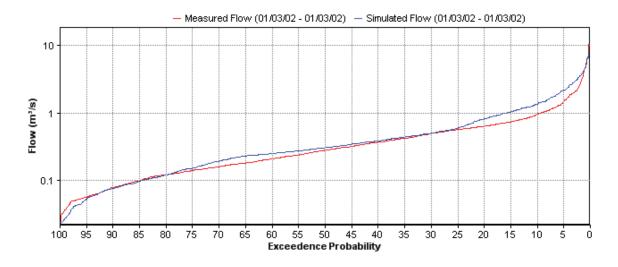


Figure K.7 Horokiri Stream: Observed and Simulated Flow Duration Curves

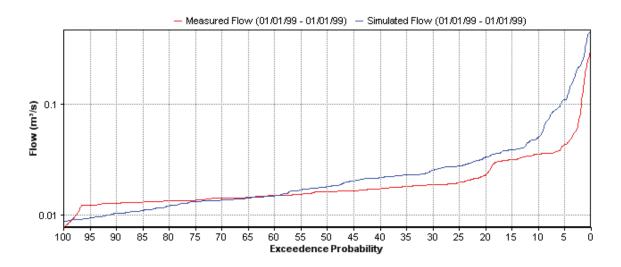


Figure K.8 Wainui Stream: Observed and Simulated Flow Duration Curves

K.3.4 Model Parameters for the Ungauged Catchments

SMWBM parameters were selected for the ungauged catchment on the basis of catchment similarity to gauged catchments. These parameters are listed in **Table K.7**.

Table K.7 SMWBM Parameters for Ungauged Catchments

Catchment	ST	FT	Zmax	PI	Al	GL	POW
Catchinent	(mm)	(mm/day)	(mm/hr)	(mm)	ΔΙ	OL	1 000

Catchment	ST	FT	Zmax	PI	Al	GL	POW
	(mm)	(mm/day)	(mm/hr)	(mm)			
Browns Catchment	250	1.2	5	1	0.3	1	1
Collins Catchment	200	1.2	5	2	0.3	1	1
Duck Creek Catchment	200	1.2	5	2	0.2	1	1
Horokiri Catchment	250	1.5	5	1	0	1	2
Kakaho Catchment	250	1.5	5	1	0	1	1
Kenepuru Catchment	250	1.2	5	1	0.27	1	1
Pauatahanui Catchment	200	1.2	5	2	0	1	1
Porirua Catchment	250	1.2	5	1	0.27	1	1
Ration Catchment	250	1.5	5	1	0	1	1
Takapuwahia Catchment	250	1.2	5	1	0.1	1	1
Wainui Catchment	250	1.5	8	1	0	1	1
Whareroa Catchment	250	1.2	5	1	0	1	1
Duck Creek 2	200	1.2	5	2	0	1	1
Horokiri 3	250	1.5	5	1	0	1	2
Horokiri 4	250	1.5	5	1	0	1	2
Catchment A	250	1.2	5	1	0.3	1	1
Catchment B	250	1.2	5	1	0.3	1	1
Catchment C	250	1.2	5	1	0.3	1	1
Catchment D	250	1.2	5	1	0.1	1	1
Catchment E	250	1.2	5	1	0	1	1
Catchment F	250	1.2	5	1	0	1	1

Catchment	ST (mm)	FT (mm/day)	Zmax (mm/hr)	PI (mm)	Al	GL	POW
Catchment G	250	1.2	5	1	0.3	1	1
Catchment H	250	1.2	5	1	0.2	1	1
Catchment I	250	1.2	5	1	0.1	1	1
Catchment J	250	1.5	5	1	0	1	1
Catchment K	250	1.5	5	1	0	1	1
Catchment L	250	1.5	5	1	0	1	1
Catchment M	250	1.5	5	1	0.3	1	1

The SMWBM was used to generate daily streamflow time series for the full period of the grid rainfall data (1 January 1960 to 22 March 2010). The catchment area together with average and maximum simulated daily flows are listed in **Table K.8** for each catchment.

Table K.8 Catchment Areas, Average and Maximum Daily Flows

		Daily flow (m³/s)		
Catchment	Area (km²)	Average	Maximum	
Browns Catchment	1.35	0.026	0.517	
Collins Catchment	0.64	0.014	0.322	
Duck Creek Catchment	10.30	0.206	5.072	
Horokiri Catchment	33.06	0.736	16.818	
Kakaho Catchment	12.46	0.264	6.548	
Kenepuru Catchment	12.66	0.259	5.881	
Pauatahanui Catchment	41.68	0.876	22.638	
Porirua Catchment	41.08	0.902	20.644	
Ration Catchment	6.80	0.158	3.410	
Takapuwahia Catchment	3.47	0.057	1.642	
Wainui Catchment	8.31	0.181	5.810	
Whareroa Catchment	15.72	0.352	8.991	
Duck Creek 2	6.15	0.119	3.108	
Horokiri 3	14.77	0.329	8.761	

Catchment	Area (km²)	Daily flow (m³/s)	
Horokiri 4	10.60	0.247	6.421
Catchment A	0.64	0.012	0.223
Catchment B	0.29	0.005	0.100
Catchment C	0.41	0.008	0.142
Catchment D	0.45	0.008	0.198
Catchment E	0.58	0.010	0.253
Catchment F	0.98	0.016	0.481
Catchment G	1.11	0.020	0.439
Catchment H	1.01	0.017	0.423
Catchment I	1.60	0.028	0.798
Catchment J	0.41	0.008	0.220
Catchment K	0.25	0.005	0.128
Catchment L	0.25	0.005	0.117
Catchment M	0.25	0.005	0.085

The streamflow time series for the ungauged catchments were generated from the grid rainfall time series, which will preserve the temporal correlation of streamflow between the catchments.

K.4 Summary

The objective was to generate daily streamflow time series for the catchments that feed into the Porirua Harbour and that will be traversed by the proposed highway.

The approach followed was to calibrate the SMWBM using data for the four gauged catchments in the study area to form a basis for selecting model parameters for the ungauged catchments.

The grid daily rainfall time series, generated from observed rainfall data by NIWA, were selected to provide rainfall input to the SMWBM because inadequate observed rainfall data is available to represent rainfall on the catchments. The selected grid rainfall time series was factored according to the ratio of catchment MAP to grid MAP to generate a rainfall time series for each catchment.

The spatial and temporal correlation of rainfall between the grid time series helped preserve these correlations between the synthetic streamflow time series.

The synthetic streamflow time series are considered representative of runoff from each of the catchments and suitable for input to the hydraulic models that will be used in further analyses.

Appendix 15.L Construction - Draft Erosion and Sediment Control Monitoring

L.1 Introduction

This section describes a draft monitoring plan for the performance of the measures proposed and potential impacts on the streams water quality. It is intended to provide an outline to manage the performance of the erosion and sediment control devices and is considered key to the success of the Project.

L.2 Monitoring Plan Structure

The monitoring plan will need to detail who has responsibility for its control and ownership and the status of the document. Including:

- Covers the roles of the people who have actions to implement this plan and their responsibilities.
- Provides an overview of the proposed ESC measures for the road alignment.
- Documents the compliance monitoring required to ensure that the proposed ESC measures are operating and performing as designed.
- Inspections and Performance Monitoring
- Compliance Reporting
- Assess the impacts of construction of the Project on water quality are as anticipated and direct action to modify ESC Plans

L.3 Interaction with other Project Monitoring Documents

The Performance Monitoring Plan will need to cover how it interacts with:

- Construction Management Plan
- Incident Management Plan
- Health and Safety Plan
- Project Management Reporting and Personnel.

L.4 Document Control and Ownership

This draft plan has been produced for NZTA to support resource consent applications. Post consenting and pre construction this document will need further development. It is anticipated that ownership of the document will pass to the construction contractors. They will be responsible for its finalisation and implementation. It is however expected that the ESC measures will need to adapt and modify during construction. It is intended that this performance monitoring document should be adapted to reflect the operative ESC Plan.

L.5 Roles and Responsibilities

This section of the plan will outline who are the key contacts and their responsibilities and will be completed once a construction contractor is identified. It will include:

Transmission Gully Project Technical Report 15:

Assessment of Water Quality Effect

- Site management
- Training records and requirements
- Monitoring of weather patterns (predictions)
- Inspection parties involved, scheduling, records and reporting
- Sampling parties involved, scheduling, records and reporting
- Communications includes Media plan, CEMP changes, Project and site meeting actions and follow ups
- Reporting
- Incident and emergency response.

L.6 Emergency Contacts

This section will outline key contractor, NZTA, Regional Council and Emergency Services contact details.

L.7 Overview of Erosion and Sediment Control Activities

The ESC Philosophy outlines the principles to be applied in managing erosion and sediment release as part of this Project. The Project will be an extensive multi-linear construction project over approximately eight years. Site constraints change over the length of the alignment. The Project will require further specification on the application of these measures during construction and will need to be undertaken as part of the detailed design work. This includes the testing and development of measures to contain sediment in steep areas of the construction and matching the best treatment options to the catchment geology.

A similar approach has been taken to specifying the performance and water quality monitoring for the Project. It is not intended to specify monitoring for each of these individual devices in this plan. The general philosophy will be outlined.

The performance monitoring activities will focus on the ESC methods whose use and/or performance can be assessed as outlined in **Table L.1** to **Table L.3**.

As part of the construction of the Project, works will be required in water bodies. These will include stream crossings and stream diversions. Performance monitoring and compliance inspections of these work areas will be required.

L.8 Performance Monitoring Activities - Overview

The ESC activities proposed cover actions that are proposed to be undertaken on site as well as use of specific devices and methods. These will require a mix of monitoring types to ensure the performance of the ESC plan and compliance with consent conditions. Monitoring types can generally be grouped into inspection activities and physical monitoring activities. With all activities a management action is required should a specific trigger be exceeded. Reporting of inspections, monitoring and actions is also required. Erosion control measures and sediment control measures are considered separately in earlier sections. The GWRC guidelines have been used to develop these procedures.

L.9 Performance Monitoring Activities for Erosion Control Measures

Table L1 sets out the compliance monitoring activities, for each erosion control method identified in Table 15.11. These include the following activities:

- **Routine inspection** Documents the inspection frequency that is required to ensure the devices are operative, performing as designed and ready for future rain events.
- Incident inspection Details events that may trigger additional inspections to check the devices are operative
- **Wet weather inspections** Documents the performance of erosion control measures in circumstances which test the design parameters.
- Inspection criteria –Specific factors to be considered and noted during the inspection.
- Performance measures Performance specification identifying what trigger values (narrative and numeric) monitoring results should be compared against.
- Maintenance / management actions Actions to be undertaken when trigger values are determined to be exceeded during inspection; and
- Reporting Notes what should be reported and who to.

Table L.1 Performance Monitoring Activities for Erosion Control Measures

Erosion Control Measure	Routine Inspection	Wet Weather and Incident Inspections	Inspect for	Performance measures	Management Action	Reporting
Control and retention of disturbed soil at earthwork sites (Improve Soil Health)	Weekly	During heavy rain (Q10 event) and after all rain	Soil loss Rill erosion Surface water flow pathways	Retention of soil	Rectify any erosion or channel formation Re-grade surface as required	Inspection, outcomes and managemen t action in site log
Provide Short Term Soil Cover	Weekly	When rainfall predicted through weather monitoring.	Surface water pathways / erosion	Design specifications	Undertake straw mulching Hydro seeding	Inspection, outcomes and managemen t action in site log
Provide Long Term Soil Cover	Weekly	During heavy rain (Q10 event) and after heavy rain (Q10 event)	Damage / erosion Growth of plantings (including gaps)	90% cover or stabilised.	Rectify and repair damage to blankets/netting Replant gaps/dieback	Inspection, outcomes and managemen t action in site log

Erosion Control Measure	Routine Inspection	Wet Weather and Incident Inspections	Inspect for	Performance measures	Management Action	Reporting
Steep Slope Techniques	Weekly till 90% stabilised (i.e. 90% gassed or equivalent)	During heavy rain (Q10 event) and after heavy rain (Q10 event)	Damage / erosion Growth of plantings (including gaps)	Design specifications	Rectify and repair damage to blankets/netting Replant gaps/dieback	Inspection, outcomes and managemen t action in site log

L.10 Performance Monitoring Activities for Surface Water Control Measures Table L.2 sets out the compliance monitoring activities for each surface water control method. These include the following activities:

- **Routine inspection** Documents the inspection frequency that is required to ensure the devices are operative, performing as designed and ready for future rain events.
- Incident inspection Details events that may trigger additional inspections to check the devices are operative
- Wet weather inspections Documents the performance of erosion control measures in circumstances which test the design parameters.
- Inspection criteria Specific factors to be considered and noted during the inspection.
- **Performances measures** Performance specification identifying what trigger values (narrative and numeric) monitoring results should be compared against.
- Maintenance / management actions Actions to be undertaken when trigger values are determined to be exceeded during inspection; and
- Reporting Notes what should be reported and who to.

Table L.2 Compliance Monitoring Activities for Surface Water Control Measures

Surface Water Control Measure	Routine Inspection	Wet weather and incident inspections	Inspect for	Performance measures	Management Action	Reporting
----------------------------------	-----------------------	--------------------------------------	-------------	-------------------------	----------------------	-----------

Surface Water Control Measure	Routine Inspection	Wet weather and incident inspections	Inspect for	Performance measures	Management Action	Reporting
Clean water diversion bund	Weekly	During heavy rain (Q10 event) and after all rain	Damage / erosion Blockages Sediment build-up	Design specifications	Rectify any damage / erosion or blockages Remove accumulated sediment in diversion channel.	Inspection, outcomes and management action in site log
Rock check dam	Weekly	After all rain	Damage / erosion Blockages Sediment build-up	Design specifications	Rectify any damage / erosion or blockages Remove accumulated sediment behind dams when 50% full	Inspection, outcomes and management action in site log
Pipe drop structure/ flume	Weekly	After all rain	Damage / erosion Blockages	Design specifications	Rectify any damage / erosion or blockages	Inspection, outcomes and management action in site log
'Pinned' Silt socks or gravel check dams	Weekly	During heavy rain (Q10 event) and after heavy rain (Q10 event)	Damage / erosion Sediment build-up	Design specifications	Rectify and damage / erosion or blockages Replace/ repair gaps	Inspection, outcomes and management action in site log

L.11 Compliance Monitoring Activities for Sediment Control Measures

Table L.3 sets out an overview of the compliance monitoring activities for each sediment control method identified in **Table L.1**.

Table L.3 Overview of Compliance Monitoring Activities for Sediment Control Measures

Sediment Control	Inspection	Monitoring	Reporting
measure	Шѕреспоп	Worldoning	Reporting

Sediment Control measure	Inspection	Monitoring	Reporting
Sediment Retention Pond	Daily and post incident	Performance audit check	Yes
Chemical Treatment System	Weekly and post incident	Performance audit check	Yes
Sediment Fence	Weekly and post incident	Performance audit check	Yes
Decanting Earth Bund	Weekly and post incident	Performance audit check	Yes
Stormwater Inlet Protection	Weekly and post incident	Performance audit check	Yes
Works in watercourses	Weekly and post incident	Performance audit check	Yes

For sediment control measures a greater range of compliance monitoring actions are required. These are further documented below in Table L4 and Table L5.

L.12 Performance Inspections

Table outlines the inspection required for each proposed sediment control measure. These include the following activities:

- **Routine inspection** Documents the inspection frequency that is required to ensure the devices are operative, performing as designed and ready for future rain events.
- Incident inspection Details events that may trigger additional inspections to check the devices are operative
- **Wet weather inspections** Documents the performance of erosion control measures in circumstances which test the design parameters.
- Inspection criteria Specific factors to be considered and noted during the inspection.
- Performance measures Performance specification identifying what trigger values (narrative and numeric) monitoring results should be compared against.
- Maintenance / management actions Actions to be undertaken when trigger values are determined to be exceeded during inspection; and
- Reporting Notes what should be reported and who to.

Table L4 Compliance Inspection Activities for Sediment Control Measures

Device	Routine Inspection	Incident Inspection	Inspect for	Performance Measures	Management Action	Reporting
Sediment Retention Pond	Daily	After all rain. During heavy rain (Q10)	Sediment build up	Measure depth of sediment versus pond volume	Remove sediment when 20% full	Inspection, outcomes and management action in site log
			Damage/ Function of the decants/ Level Spreaders / Fore bay	Design Specifications	Rectify any damage / blockages to fore bay	Inspection, outcomes and management action in site log Advise GWRC within 24hrs of significant damage and management actions
Chemical treatment System	Weekly	After all rain. During heavy rain (Q10)	Damage, low dosing supply	Design Specifications	Rectify any damage or blockages. Replace flocculent	Inspection, outcomes and management action in site log
Sediment Fence / Silt Socks	Weekly	After all storm events (Q2- Q10)	Sediment build-up	Measure depth of sediment versus fence height	Remove sediment when 20% of height occupied	Inspection, outcomes and management action in site log
			Damage/ erosion/ water bypass	Design Specifications	Rectify any damage / erosion. Relocate devices to deal with bypass	Inspection, outcomes and management action in site log

Device	Routine Inspection	Incident Inspection	Inspect for	Performance Measures	Management Action	Reporting
Decanting Earth Bund	Weekly	After all rain events During heavy rain (Q10)	Sediment build-up	Measure depth of sediment versus pond volume	Remove sediment when 20% full	Inspection, outcomes and management action in site log
			Damage/ erosion Blockages	Design Specifications	Rectify any damage / erosion or blockages	Inspection, outcomes and management action in site log Advise GWRC within 24hrs of significant damage and management actions
Stormwater Inlet Protection	Weekly	After all rain	Damage/ erosion Blockages	Design Specifications	Rectify any damage / erosion or blockages	Inspection, outcomes and management action in site log
Works in watercourses	Weekly	After all rain	Visual release of sediment into the water above that envisaged for works	Documented method for works	Investigate source of sediment and rectify works/modify method	Inspection, outcomes and management action in site log

L.13 Performance Monitoring

To ensure ESC measures function as intended it is proposed to monitor performance of sediment control devices at the beginning of each new construction phase (catchment section). Table L5 sets out the monitoring activities required for the sediment control devices to ensure that the designs are operating within their design performance specifications as discussed in section 3. This will allow update and modifications to the design should performance not be as planned. Following this and once compliance has been ascertained frequency for monitoring will drop back to a representative range of devices during a rain event. This section of monitoring assesses the performance of the devices versus their design standards, not the absolute effects on

the receiving environment. It is noted that failure to meet the performance standard does not necessarily indicate that an impact will occur in the receiving environment as a result of the discharge. Monitoring proposed in section 4.6 is intended to understand the effect on the receiving environment water quality.

Table L5 Monitoring Activities for Sediment Control Measures

Device	Monitoring Required	Frequency	Parameters	Locations	Performance s measures	Management Action and Reporting
Sediment Retention Pond	Audit check of device performance	All ponds constructed at the beginning of each new construction phase to enable performance to be ascertained during all rain events which generate a discharge. If devices are performing as intended then frequency should drop to one in every five ponds. Monitoring to occur at times during rain events that generate a discharge. Number of ponds is intended to encompass a representative sample of different soil characteristics in the construction area under the SEMP and as such could be adjusted accordingly.	Flow rates, Total Suspended Solids, calibrated turbidity, particle size analysis.	Inlet to pond and outlet from pond	Sediment retention devices up to Q2 event 90% removal particles >60 µm, 70% removal particles <60 µm	Consider whether discharge has downstream impact. Modify design to meet target and resample if required. Advise GWRC of failure. Report all samples in monthly report
Chemical Treatment System	Audit check of device performance	All ponds constructed at the beginning of each new construction phase to enable performance to be ascertained during all rain events which	Depends on chemical dosing method. Include Visual check of pond clarity, pH,	Inlet to pond and outlet from pond	System is not being over dosed; this will include limits for pH and Aluminium.	Modify dosing system if overdosing. Note Inspection, outcomes

		generate a discharge. If devices are performing as intended then frequency should drop to one in every five ponds. Monitoring to occur at times during rain events that generate a discharge. Number of ponds is intended to encompass a representative sample of different soil characteristics in the construction area under the SEMP and as such could be adjusted accordingly.	Flow rates, Total Suspended Solids, calibrated turbidity, particle size analysis and settling rates		(If required) Q2 event 90% removal particles >60 µm, 70% removal particles <60 µm	and management action in site log
Decanting Earth Bund	Audit check of device performance	All control devices at the beginning of each new construction phase to confirm operation as intended. If performing as designed then frequency should drop to one in every ten bunds checked once during operation during rain storm that creates discharge.	Include Visual check of pond clarity, calibrated turbidity, particle size analysis and settling rates	Inlet to bund and outlet from bund	Up to Q2 event, if 3% of catchment area, >30% TSS removal for particles <60microns 100% removal of >60microns. If less than 3% area ratio this down according to % catchment area/3%.	Consider whether discharge has downstream impact. Modify design to meet target and resample if required. Advise GWRC of failure. Report all samples in monthly report

L.14 Reporting

In addition to the outline for the reporting requirements for the inspection and maintenance activities in Table L4 and Table L5, it is considered that a monthly report to GWRC will be required. This would outline:

- Inspections undertaken where issues arose and action taken to rectify those issues
- Results of all monitoring undertaken
- Analysis of trends in monitoring data
- Non-conformances in monitoring results and actions undertaken.

L.15 Monitoring of Effects on Water Quality

Performance monitoring of the proposed ESC devices is intended to ensure that they operate as designed and that their performance is maintained over the lifespan of their use on the project. The discharges from the site works and the proposed treatment devices will enter watercourses throughout the catchments. The following monitoring of the receiving environment is proposed to check whether the effects of the discharges are as anticipated.

L.16 Monitoring Philosophy

Within the Project alignment are a number of catchments. There will be many discharge points from sediment control devices within each catchment. The location of these discharges relate to the various sections of Project being worked on, the staging of works and topography.

It is not intended to monitor impacts at all sites throughout the entire development lifespan. Instead an approach of setting up long term catchment control sites and then short term smaller work area monitoring is proposed. The intent is that the catchment control sites create a long term dataset of upstream and downstream water quality. These can be used for monitoring both construction and operational stormwater discharges.

As work progresses through each area monitoring will assess the effect of each stage of work with sampling effort based on the risk the catchment poses from the ongoing activities. An indication of the monitoring required for a theoretical catchment is shown in **Figure L1**.

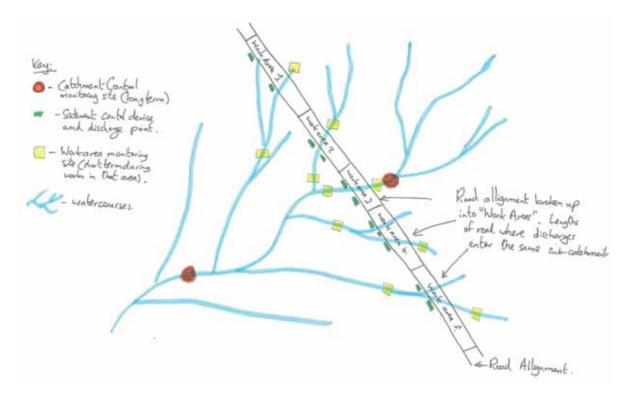


Figure L1 Indicative Monitoring Requirements for a Catchment

L.17 Proposed Monitoring and Reporting

The requirements for the catchment control and work area monitoring are shown in Table L6 and Table L7 These tables outline the following details:

- Sample Point The locations at which monitoring is to be undertaken. For the Catchment Control sites these are a selection of the sites used in the scoping studies.
- **Frequency** Required frequency of monitoring, this generally varies prior to, during and post construction. The intention is to sample pre construction to develop a baseline, then during and post construction until the catchment is stabilised to assess effects.
- Parameters Recommended parameters to sample. These will be finalised after completion of the AEE. These are a subset of the monitoring undertaken for the scoping studies. For both the catchment control and work area monitoring sites key parameters are a visual assessment of percentage fine sediment, calibrated turbidity, particle size and total suspended solids as these relate to the primary construction contaminant risks. In addition field parameters including flow rates, pH, temp, streambed and macroinvertebrate assessments will be recorded. These are intended to give an early identification of where any changes in sediment load, movement and deposition are affecting basic water quality during works.
- At the catchment control sites additional monitoring will be undertaken for flow rates, turbidity, pH and temperature. These sites will also be used to monitor long term stream health indices by monitoring at regular intervals macro-invertebrate and fish communities.

- Compliance Limits Proposed limits for certain monitored parameters. These will be finalised after completion of the AEE. These are only proposed for the key parameters of assessment as follows; percentage fine sediment, calibrated turbidity and total suspended solids. These will give the best indication of changes in sediment load and deposition in the catchments. Should these limits be exceeded it will trigger a management action to inspect and investigate the suitability of the ESC operations in that work area/catchment. The remaining parameters are intended to give a picture of longer term temporal changes in the catchments and would be analysed over the lifespan of the project. As such no compliance limits are finalised for this report and should be developed as part of the AEE.
- Reporting An indication of how and when results should be reported. It is intended that all parameters are reported with analysis in monthly reports and collated with trend analysis in an annual report. Exceedance of compliance limits should be reported to GWRC within 5 working days of receipt of the results.

Table L6 Monitoring Requirement for Catchment Control Monitoring Sites

Sample point	Frequency	Parameters	Compliance Limits	Reporting
Whareroa – Whareroa 1 (U/S) and new D/S site. Wainui – Wainui 1 (U/S) and new D/S site. Horokiri -Horokiri 1 (U/S)	Monthly starting at least 12 months prior to works starting in the catchment. Monthly during	Fine sediment percentage by particle size analysis (%)	Change by X% at D/S site compared to pre development	To GWRC within 5 working days of non compliance In monthly report
and Horokiri 2 (D/S). [To confirm that 1 is upstream of all works – alternatively consider 3 as side control]. Ration – Establish new upstream and downstream sample points.	construction. For 6 months after opening of the road	Turbidity (NTU)	Change by X units vs. upstream site and/or X% outside the range of background data (If baseline data available)	In monthly report
Pauatahanui – Pauatahanui 1 (U/S) Pauatahanui 2 (D/S). Duck Creek – Duck 1 (U/S) Duck 2 (D/S). Kenepuru – Kenepuru 1 (U/S) and Kenepuru 3		Total Suspended Solids (g/m³)	Change by X units vs. upstream site and/or X% outside the range of background data (If baseline data available)	
(D/S). Porirua – Porirua 1 (U/S)		Temperature	Consultation with	
and Porirua 2 (D/S).		рН	Consultation with GWRC	
		Macro-	Consultation with	To GWRC within

Invertebrates	GWRC	5 working days of receipt of results In monthly report
Fish community	Consultation with GWRC	To GWRC within 5 working days of receipt of results In monthly report
Harbour Estuary assessment for cockle health and other benthic fauna parameters	Consultation with GWRC	To GWRC within 5 working days of receipt of results In monthly report

Table L7 Monitoring Requirement for Work Area Monitoring Sites

Sample point	Frequency	Parameters	Compliance Limits	Reporting
Upstream and downstream of works on each work area	downstream of months prior to works starting in the catchment. Monthly during construction. Monthly after works completed in that catchment that result in all bare soils stabilised by	Fine sediment percentage by particle size analysis (%)	Change by X% at D/S site compared to pre development	Within 24 hrs of non compliance to GWRC
(to capture effect of all discharges from sediment		Turbidity (NTU)	Change by X% at D/S site compared to pre development	Within 24 hrs of non compliance to GWRC
work area sub- catchment)		Total Suspended Solids (g/m³)	Change by X% at D/S site compared to pre development	In monthly report
		Temperature	Change by X% at D/S site compared to pre development	
		pH	Change by X% at D/S site compared to pre development	
		Macro-Invertebrates	Change by X units vs. upstream site and/or X% outside the range of	Within 24 hrs of non compliance to GWRC In monthly report

	background data.	
Streambed assessment	Change in bed matrix at downstream site	Within 24 hrs of non compliance
	by x%	to GWRC
	Visual assessment of	In monthly report
	re-suspension of	
	suspended solids	

Appendix 15.M Sediment Control Volumes

Catchment	Catchment Area (m²)	Required Pond Volume (m³)
1	5478	164
2	3651	110
3	5420	163
4	2258	68
5	6323	190
6	13003	390
7	3132	94
12	5185	156
13	2157	65
14	1568	47
16	1180	35
17	13787	414
19	2659	80
20	9236	277
22	1881	56
23	2303	69
24	3429	103
25	5493	165
26	3012	90
27	3194	96
28	2720	82
29	2895	87
30	2461	74
31	3642	109
33	3651	110
34	1040	31
35	3580	107

36	3150	95
37	6734	202
39	1658	50
41	6464	194
42	13173	395
43	7662	230
44	7632	229
46	5903	177
47	1362	41
48	2258	68
49	8907	267
50	2354	71
51	8218	247
52	4766	143
53	10105	303
54	6062	182
56	10744	322
57	8724	262
58	9551	287
59	5292	159
60	2822	85
61	3515	105
62	4046	121
64	4786	144
66	4472	134
67	6847	205
68	3803	114
70	4683	140
71	2791	84
72	2595	78
73	5405	162
74	3802	114

76 839	25
77 3088	93
78 3340	100
83 10912	327
84 9468	284
86 2102	63
88 2772	83
89 1189	36
90 1297	39
91 949	28
93 4543	136
94 1629	49
96 4304	129
97 2116	63
98 998	30
99 1823	55
100 2363	71
102 2762	83
103 1049	31
105 3460	104
106 2151	65
107 2159	65
108 9397	282
109 4904	147
110 2775	83
112 1147	34
113 1353	41
114 1992	60
115 11031	331
116 11675	350
118 2350	70

119	2489	75
122	3534	106
123	2447	73
124	1950	58
125	2709	81
126	2512	75
127	2875	86
128	1409	42
129	7913	237
130	9661	290
131	800	24
132	1366	41
133	1705	51
134	613	18
135	2539	76
136	2113	63
137	2236	67
139	1570	47
140	5441	163
141	3169	95
142	1005	30
143	1929	58
144	2432	73
146	3703	111
147	1775	53
148	4391	132
149	3890	117
150	3928	118
151	1726	52
152	4088	123
153	649	19
154	716	21

155	3701	111
156	7158	215
157	939	28
158	1783	53
159	3197	96
160	1100	33
161	3285	99
162	3536	106
163	3625	109
164	889	27
165	1078	32
166	3053	92
167	1371	41
168	1134	34
169	3668	110
170	4216	126
173	857	26
175	909	27
176	2867	86
177	3585	108
181	1156	35
184	2711	81
185	2019	61
189	1919	58
190	4881	146
191	2234	67
192	12176	365
193	2321	70
194	12933	388
197	5147	154
198	4411	132
199	1603	48

201 3700 111 202 11693 351 203 1439 43 204 2166 65 206 3126 94 207 3661 110 208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563	200	1873	56
203 1439 43 204 2166 65 206 3126 94 207 3661 110 208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 </td <td>201</td> <td>3700</td> <td>111</td>	201	3700	111
204 2166 65 206 3126 94 207 3661 110 208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	202	11693	351
206 3126 94 207 3661 110 208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	203	1439	43
207 3661 110 208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	204	2166	65
208 3523 106 209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	206	3126	94
209 1187 36 210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	207	3661	110
210 8047 241 211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	208	3523	106
211 2521 76 212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	209	1187	36
212 6916 207 216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	210	8047	241
216 6858 206 218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	211	2521	76
218 5181 155 219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	212	6916	207
219 5731 172 223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	216	6858	206
223 5629 169 227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	218	5181	155
227 5148 154 228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	219	5731	172
228 2708 81 229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	223	5629	169
229 4605 138 230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	227	5148	154
230 3281 98 231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	228	2708	81
231 3024 91 232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	229	4605	138
232 1556 47 233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	230	3281	98
233 2913 87 235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	231	3024	91
235 2178 65 236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	232	1556	47
236 3925 118 237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	233	2913	87
237 7350 220 238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	235	2178	65
238 5333 160 239 2160 65 242 5563 167 243 2903 87 244 6438 193	236	3925	118
239 2160 65 242 5563 167 243 2903 87 244 6438 193	237	7350	220
242 5563 167 243 2903 87 244 6438 193	238	5333	160
243 2903 87 244 6438 193	239	2160	65
244 6438 193	242	5563	167
	243	2903	87
245 1861 56	244	6438	193
	245	1861	56

246 2	2233	67
	1481	44
248 2	2116	63
249	6803	204
250	6814	204
251	3712	111
252	3104	183
257	1739	52
258	7810	234
259	3230	97
260 1	1276	338
263	6036	181
264	5090	153
265	5370	161
266	6095	183
267	4181	125
268	4835	145
269	1737	52
270	2917	88
271	6496	195
272	4197	126
274	2091	63
277	3163	245
279	3906	117
281	3187	96
282	5227	157
283	4615	138
287	5210	156
293	2824	85
294 2	2788	84
295	4163	125
296		

297	1555	47
298	2071	62
300	1417	43
301	2613	78
302	2757	83
303	1073	32
304	1713	51
305	3056	92
306	2330	70
307	3498	105
308	4547	136
309	2245	67
310	2668	80
311	2029	61
312	3880	116
313	6633	199
314	3201	96
315	13952	419
316	3089	93
317	13956	419
318	3530	106
319	1865	56
320	3703	111
321	4009	120
322	2525	76
323	2373	71
324	2688	81
326	2554	77
327	3029	91
328	3758	113
329	4180	125
330	4206	126

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

331	1727	52
332	2701	81
333	2471	74
334	2013	60
335	3937	118
336	1120	34
337	2142	64
338	2160	65
339	1970	59
340	3082	92
341	3637	109
342	1032	31
344	3924	118
347	3812	114
348	6328	190
349	4727	142
350	11302	339
351	2837	85
352	2153	65
353	2598	78
354	2294	69
355	923	28
356	4841	145
357	1582	47
358	1637	49
359	4139	124
360	6936	208
361	7546	226
367	2759	83
370	2288	69
372	3230	97
373	1912	57

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

374	4305	129
376	2594	78
377	4248	127
378	8801	264
A - 400	3959	119
B - 401	3027	91
C - 402	3575	107
F - 405	3191	96
J - 408	2442	73
K1 - 409	11059	332
K2 - 410	7724	232
L - 411	2412	72
N - 413	21403	642
P - 415	1100	33
Q1 - 416	4107	123
Q2 - 417	3801	114
R - 418	3006	90
U - 421	10886	327
V - 422	11603	348
W - 423	5507	165
X - 424	7973	239
Y - 425	4838	145
Z - 426	5126	154

Appendix 15.N USLE calculation

N.1 Universal Soil Loss Equation

The universal soil loss equation (USLE) is an empirical model developed by the U.S. Department of Agriculture (USDA) to estimate sheet and rill erosion from agricultural lands (Goldman et al, 1986). The USLE was chosen as the preferred method of estimating the average annual sediment yield for the Transmission Gully Project.

The general form of the USLE is:

 $A = R \times K \times I S \times C \times P$

Where:

A = annual soil loss from sheet and rill erosion in tons/km²

R = rainfall erosivity factor

K = soil erodibility factor

LS = slope length and steepness factor

C = cover and management factor

P = support practice factor

N.2 USLE Additional Factors

The USLE provides a method of calculating a theoretical sediment yield, however it does not take account of the proportion of that sediment that is delivered to receiving environment, nor does it account for mitigation measures which are designed to intercept and remove sediment generated in the catchment prior to its delivery to receiving environments.

There are two additional factors that are applied to account for these processes:

N.3 Sediment Removal Efficiency (SRE)

This describes the effectiveness of methods designed to retain the soil in situ and mitigate the effects of rainfall erosivity. The sediment yield model uses this factor, on an average annual basis, to determine the contribution of the erosion control methodology along the Transmission Gully Project alignment.

This does not include the effectiveness of sediment control ponds. The design efficiency of the ponds was applied on a sub-catchment, rather than land area basis.

N.4 Sediment Delivery Ratio (SDR)

This describes the amount of sediment that is delivered to receiving environments. This factor is used to adjust the estimates of sediment yield calculated by the USLE with observed loads in receiving environments. The sediment yield model has allowed for this by a dual calibration between the observed data and the ratio between the NIWA model and the combined USLE prediction.

The revised form of the equation used becomes:

 $A = R \times K \times LS \times C \times P \times SRE \times SDR$ as Kg/hectare/year

The factors used for the USLE yield calculations have been derived from existing data wherever possible and calculated from measures or sources related to the Project catchments. This means that all of the USLE factorials have a spatial resolution and for some factors like the land use factor C have a temporal resolution as well. The factors assumed for calculation of the USLE are given in Table N1. Each factor is then discussed in the following sections.

Table N1 USLE Factors

Factor	Description	Value
R	Rainfall erosivity	Catchment rainfall based
К	Soil erodibility	Catchment geology based
LS	Slope length steepness	Catchment topography based
С	Bare soil	1.0 (otherwise catchment land use)
Р	Bare soil	0.9 rough irregular surface
SRE	Erosion control measures	0.25 (75% efficiency)
SDR	USLE to NIWA ratio	0.12

N.4.1 USLE Limitations

The USLE:

- Estimates erosion from sheet and rill erosion, not gully erosion, stream channel or land sliding
- Is an empirical equation based on US agricultural sites. There is limited research on its applicability to New Zealand, although it is widely used
- Estimates average annual sediment yield, rather than event based loads.

N.5 NIWA Suspended Sediment Tool

The NIWA Suspended-Sediment Yield Estimator Tool is a raster-based GIS layer of specific suspended-sediment yield (SSY, t/km2/y) from New Zealand's rivers and streams based on gauged sediment yields of over 200 river stations and an empirical model. The model relates sediment yield per unit area to mean annual rainfall and to an 'erosion terrain' classification, and has been calibrated off the river-gauging data. The erosion terrain was defined by Landcare Research on the basis of slope, rock type, soils, dominant erosion processes (using information in the NZLRI) and expert knowledge. The layer can be used to estimate suspended-sediment delivery to rivers and streams from within any defined catchment boundary and has been developed as a series of GRID files within the ARC GIS system.

The main limitation of this method is that it doesn't allow for a temporal frame for land use term, so it could not be used to predict changes in landuse such as the how the construction stage of Transmission Gully would affect sediment loads in the receiving environments. It also can't be used to predict event yields. Sediment yield estimates from Pauatahanui at Gorge were included in the calibration. The uncertainty level for this tool is order factor-of-two, but gets bigger for small catchments (< 10 km²).

SINCLAIR KNIGHT MERZ

Given these limitations, it was determined it would be more appropriate to use this method as a check to ensure the calculation of sediment yield using the USLE was in the correct order of magnitude.

N.6 Rainfall Erosivity (R) Factor

The 2 year 6 hour rainfall depth was used calculate R, as it is assumed that this would provide an estimate of the average annual rainfall erosivity. This is consist with published research: a paper *Potential Sources of Sediments and Nutrients: Sheet and Rill Erosion and Phosphorus Sources* published by C.J. Rosewell (1997) as part of the Australia: State of the Environment Technical Paper Series (Inland Waters) provides a relationship for R as a function of the 2 year 6 hour rainfall. It is also consistent with research in the US (Goldman et al, 1986), and is recommended by the Greater Wellington *Erosion and Sediment Control Guidelines* (2006) for pond design. The design assumes a 24 hour 2 year return period storm (50% AEP) of 90mm with a maximum intensity of 40mm/hour.

The equation from the *Erosion and Sediment Control Handbook* (Goldman et al, 1986) for the US west coast was used to calculate R from the 2 year 6 hour rainfall depth:

R=1.7 x 0.00828p^2.2

where: R is the rainfall erosivity factor in J/ha and p is the 2 year 6 hour rainfall depth in mm.

Rainfall stations with continuous data were analysed and maximum 6-hour rainfall were extracted following a partial series analysis, which is appropriate for annual return intervals less than 10-years. In accordance with the paper by Rosewell (1997), the Log-Pearson 3 distribution was used to determine the 2-year 6-hour rainfall depths. Sensitivity analyses showed that for the 2-year events selecting the General Extreme Value or the Generalised Logistic distribution would have negligible impact on the rainfall depths. The results together with the rainfall erosivity factors calculated using the above formula are listed in Table N2.

Table N2 6-Hour Storm Rainfall and Erosivity Factors (R) for Local Rain Gauges

Rainfall Station	2-Year 6-Hour Rainfall Depth (mm)	Rainfall Erosivity Factor (R)
Kapakapanui	61.5	121
Mangaone	57.4	104
Taungata	75.5	191
Waikanae	47.8	70
Warwicks	68.5	154
Blue Gum Spur	65.4	139
Mill Creek Reservoir	40.3	48
Seton Nossiter Park	45.9	64
Whenua Tapu	44.1	58
Wellington Glenside	41.5	51
Wellington Karori	46.9	67

It should be noted that while the 2 year 6 hour rainfall is used, the USLE does not calculate the 2 year sediment load, rather it calculates the average annual sediment load. The average annual load can then be disaggregated using a rating curve to predict sediment loads at a range of return period events. The methodology for undertaking the development of the sediment rating curve is discussed in **Section Appendix 15.Q.**

N.7 Soil Erodibility (K) Factor

The K factor represents both susceptibility of soil to erosion and the amount and rate of runoff. Soil texture, organic matter, structure, and permeability determine the erodibility of a particular soil.

In the Wellington region, units of Quaternary marine grey-blue silt and sandy silt up to 30m thick are commonly perched on, or down-faulted between, greywacke blocks, or have accumulated in partly submerged valley systems. Both loess and the marine silts have high silt and clay contents (GWRC, 2006).

A value of K can be estimated using the published soil erodibility nomograph, adjusted for gravel content and organic content (ARC, 2009).

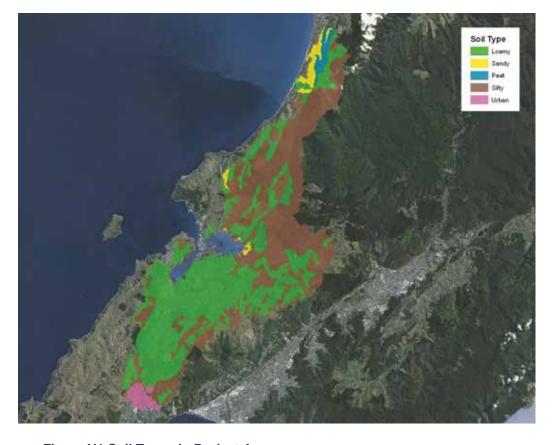
Appendix 15.Odescribes the method used to calculate K from test pits, which is a simplified version of the nomograph provided in the USLE text book (Goldman *et al.*, 1986).

Two data sets were used to describe the soils: the NZLRI data set which provides soil information for the whole area, and test pit data which provided soil and gravel information at a greater detail for the Project alignment. The soil information from the test pits was considered to be more accurate and so, where appropriate, use was made of test pit data to describe soils.

The soils were analysed using the soil type polygons identified in the NZLRI and the hydrological catchments.

The following method was to ensure the best information available was used to describe the soils:

- For those soil polygons with test pits the average K of all the test pits in that polygon and the average of the gravel content in that soil polygon was used
- Where there was a test pit in a soil polygon classified by the NZLRI as the same particle size and/or name as another polygon elsewhere, the average K value calculated using the test pits and the NZLRI data was use. The average gravel content from the test pits within the hydrological catchment was used
- Where there was no test pit in a soil polygon classified by the NZLRI as the same particle size and/or name as another polygon elsewhere, the NZLRI name was used and it was assumed the soil was made up of 70% of the major soil component and 30% minor soil component. The average gravel content from the test pits within the hydrological catchment was used
- Where there was no test pit in a soil polygon classified by the NZLRI as the same particle size elsewhere, and the NZLRI data did not describe the soil using a name, the NZLRI particle size description was used and it was assumed the soil was made up of 80% of the major soil component and 10% the other two soil fractions. The average gravel content from the test pits within the hydrological catchment was used.


Soils

About half of the soils in the NZLRI have names and these adhere to the convention of major and minor e.g. Silt loam, where loam is major and silt is the minor. This is described in NZ Geotechnical Society (2005). All have a particle size described in the NZLRI and detailed in Table N3.

Table N3 Soil Particle Size and Description

Particle size	Description
К	Skeletal
S	Sandy
L	Loamy
Z	Silty
С	Clayey
Ts	Sandy peat or sandy litter, organic matter 30-50%, sand in mineral fraction >50%
TI	Loamy peat or loamy litter, organic matter 30-50%, sand in mineral fraction <50%
Тр	Peat or litter, organic matter >50%

The soil types for the Project area were spatially resolved from the NZLRI database and used to calculate mean particle size distribution. **Figure N1** and **Figure N2** portray the soil types within the Project area.

■ Figure N1 Soil Types in Project Area

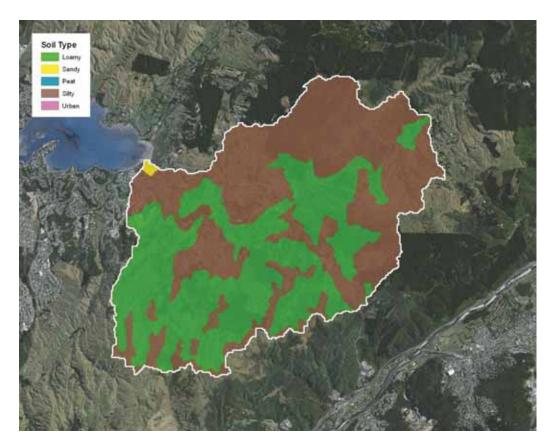


Figure N2 Soil Types in Pauatahanui Catchment

<u>Gravel</u>

The NZLRI gravel data, described in **Table N.4**, was assessed and was deemed not to be reliable for the Project area, with the vast majority of the area being described as having low gravel content.

The test pit analysis **Appendix 15.P** and from soil observation on site visits, indicated that the gravel content of soils, in particular in the Horokiri and Te Puka catchments was likely to be greater than described by the NZLRI.

Table N4 Gravel Content Classification

Gravel Class	Description	%
1	Non-gravelly to very slightly gravelly	0-4
2	Slightly gravelly	5-14
3	Moderately gravelly	15-34
4	Very gravelly	35-69
5	Extremely gravelly	70-100

Therefore, the test pit gravel data was deemed to be a more reliable dataset than the NZLRI and was used for describing the gravel content of all soils (**Figure N3**).

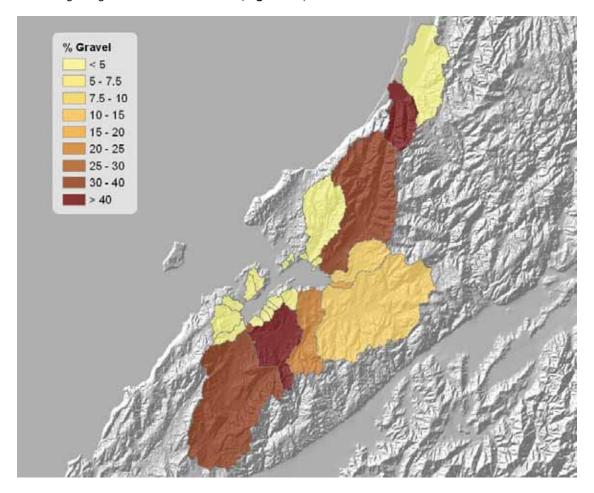


Figure N3 Average Gravel Content from Catchments Based on Test Pits

The average gravel content from the test pits was applied to the whole hydrological catchment, and then the K value was adjusted assuming that this was the percentage gravel for all soils within this catchment.

Particle Size

The particle size distribution for the catchments was selected by applying the most appropriate particle size based on the NZLRI information and test pits – as described in the method above then transformed to a spatial distribution based on the particle size classes in the NZS4404 (which covers requirements for earthworks and geotechnical needs, roads and stormwater). This allows for the prediction of a particle size distribution based on erosion and sediment loss in the catchment. This is an important attribute in calculating the distribution of particles in the harbour model. Particle size for each catchment is shown in **Table N4**. The sand, silt and clay fraction is given for each catchment.

Table N4 Particle Size by Catchment

Catchment Name	Sand Ratio [62- 2 millimetres]	Silt Ratio [2-62 microns]	Clay Ratio [0-2 microns]
Browns	40	40	20

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

Catchment Name	Sand Ratio [62- 2 millimetres]	Silt Ratio [2-62 microns]	Clay Ratio [0-2 microns]
Collins	37.16	50.14	12.7
Duck	34.82	47.13	18.05
Horokiri	22.53	64.28	13.19
Kakaho	19.57	68.56	11.87
Kenepuru	36.25	45.14	18.61
Pauatahanui	31.1	52.69	16.2
Porirua	33.08	49.46	17.47
Ration	22.34	65.34	12.32
Takapuwahia	36.68	44.43	18.89
Wainui	27.04	61.86	10.73
Whareroa	31.52	43.03	8.1
а	40	40	20
b	40	40	20
С	40	40	20
d	40	40	20
е	40	40	20
f	29.53	55.71	14.76
g	39.6	40.6	19.8
h	40	40	20
i	36.3	44.94	18.77
j	28	58	14
k	32.16	59.01	8.83

The calculated K values from the nomograph are portrayed in **Figure N4** and **Figure N5**, demonstrating the spatial resolution of the K factorial.

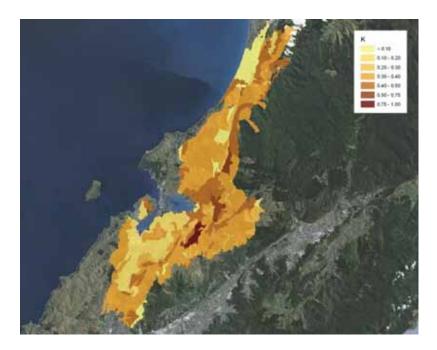


Figure N4 K Values for the Project Catchments

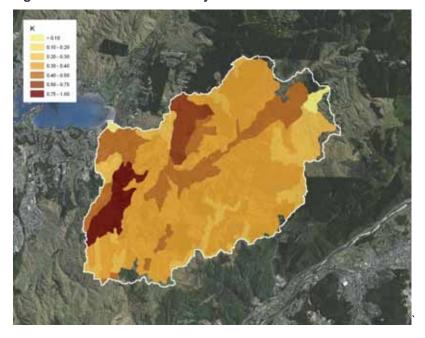


Figure N5 K Values for Pauatahanui Catchment

N.8 C Factor

Analysis of the aerial photographs was used to create a spatial distribution of land cover types which classified land into either:

- Impervious area
- Open space

Bare soil.

This allowed the catchments to be modelled for changes in land cover over the course of the Project construction.

The C factors used were taken from ARC's *Erosion and Sediment Control Workshop Notes* (ARC, 2004) and were applied to all land Table N5.

Table N5 C Factors (ARC, 2004)

Description	C Factors
Bare soil	1
Native vegetation e.g. forest and scrub	0.01
Pasture or plantation forest	0.02
Temporary grass	0.1
Mulch on topsoil	0.05
Impervious/water	0

N.9 Impervious Area

Under the USLE method no sediment is calculated as being generated from impervious cover. However in practice impervious cover is a source of some sediment. Typical values for residential land, roads and roofs of 55g/m², taken from the Auckland Regional Council's Contaminant Load Model (ARC, 2006) were used to estimate sediment yields for all connected impervious land. These were calculated separately to the USLE and added to the final values. This contribution is considered as part of the conservative framework for the estimation of sediment yields within the Project catchments.

N.10 Bare Soil (Active Earthworks)

The bare soil that was identified through the aerial photographic analysis and as identified in the NZ Landcover database was given a C value of 1.0.

N.11 Open Space

The New Zealand Land Cover Database was used to classify open space land (Table N6).

Table N6 Classification of Open Space Land From the Land Use Database

Land Use Database Land Use Categories	USLE C Factor Land Use Categories
Parkland/gardens	Pasture or plantation forest
Water	Impervious/water
Crops	Pasture or plantation forest
Pasture/grassland	Pasture or plantation forest
Bush	Native vegetation

Land Use Database Land Use Categories	USLE C Factor Land Use Categories
Plantation forest	Pasture or plantation forest
Wetlands	Impervious/water
Transport infrastructure	Impervious/water
Fallow	Pasture or plantation forest
Bare	Bare soil

The following **Figure N6** and **Figure N7** portray the spatial and temporal resolution of the C factor.

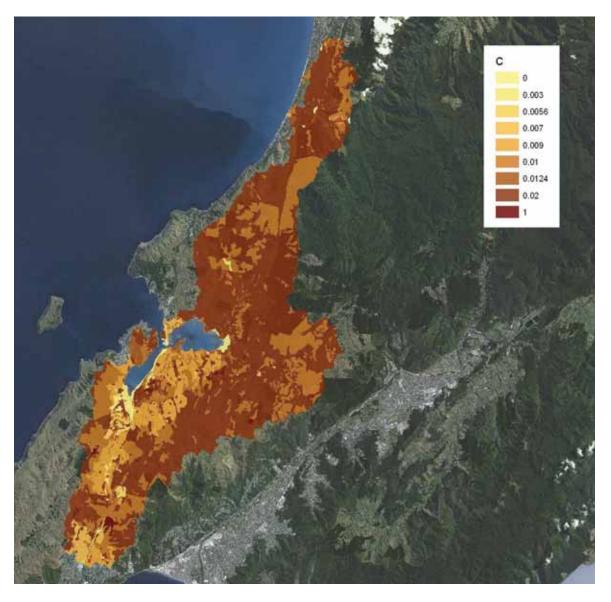


Figure N6 C Values for Project Area

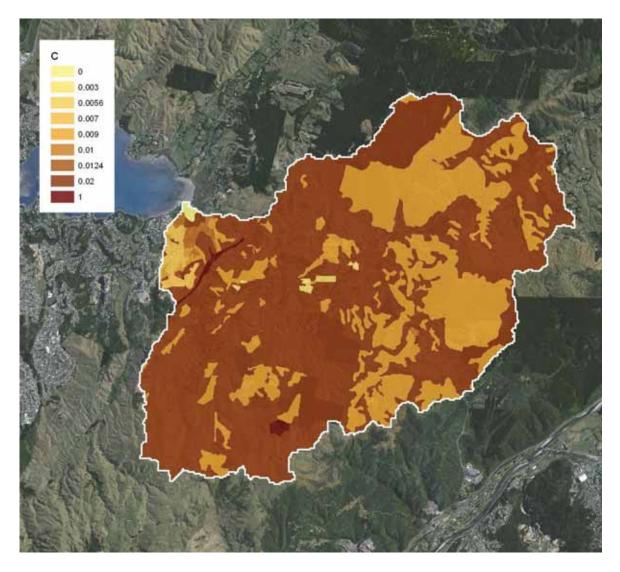


Figure N7 C Values for Pauatahanui Catchment

N.12 LS Factor

The Length-Slope factor (LS) describes the typical slope length and gradient within each catchment. Wischmeier's empirical equation as quoted by Goldman et al (1986) is used to calculate the LS factor. The LS was spatially projected from the two components slope length and steepness, then calculated to the relative proportions of each layer to give a sub-catchment and catchment value.

Equation 2

$$LS = \left(\frac{65.41 \times s^2}{s^2 + 10000} + \frac{4.56 \times s}{\sqrt{s^2 + 10000}} + 0.065\right) \left(\frac{l}{72.5}\right)^m$$

Where s is the slope steepness (%), I is the slope length (ft) and m is an exponent dependent on the slope steepness given in Table N7.

The typical slope length and gradient for each catchment was estimated using data used to calculate Time of Concentration for hydrological flows (see Technical Report 14: *Assessment of Hydrology and Stormwater Effects*) whereby the overland flow path for each catchment was used as the typical slope length. The typical slope gradients were found by averaging the gradient of all slopes within each catchment using a spatial analysis of the Digital Elevation Model at a resolution of 5 meters. This method of calculating gradients was used for simplicity and reflects typical slope gradients rather than the steepest slope gradient that is usually found in the overland flow path for Time of Concentration calculations.

Table N7 Slope Steepness Exponents

Slope Steepness (%)	m
<1	0.2
1-3	0.3
3-5	0.4
>5	0.5

Figure N8 and Figure N9 portray the spatial distribution and resolution of the LS factor.

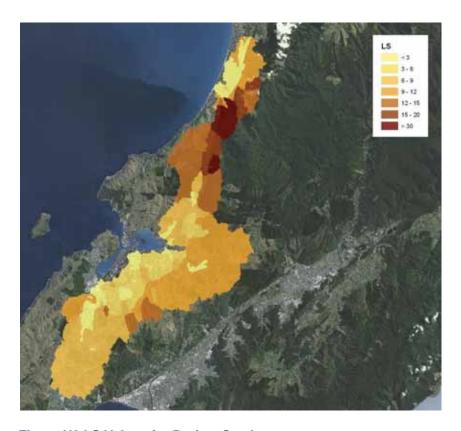


Figure N8 LS Values for Project Catchments

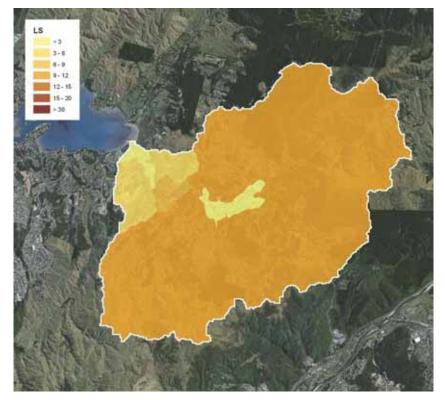


Figure N9 LS Values for Pauatahanui Catchment

N.13 P Factor

P describes the condition of bare soil and relates to how it is managed. For the development of sediment yields in the existing case a value of 1 was used for all land.

The value of P is adjusted to reflect the active earthworks stage of the Project construction (Table N8).

Table N8 Factors and Descriptions

Factor	Description
1.3	Bare Soil - compacted and smooth
1.2	Bare Soil – track walked on contour
0.9	Bare Soil – rough irregular surface
0.8	Bare Soil – disked to 250mm depth
1.0	Native vegetation/Pasture/Temporary grass/Mulch on topsoil

N.14 Sediment Removal Efficiency (SRE)

The SRE value describes the effectiveness of erosion control measures at preventing the release of sediment from earthworks areas. The factor allows a practice value for the proposed earthworks to be applied both for the construction erosion and sediment control methodology and sensitivity tests. These sensitivity tests can describe the magnitude of change in sediment release by altering the practice value for the proposed earthworks.

A factor 0.5 was applied to all land classified as bare soil in the aerial photographic analysis to reflect the requirements in the RFP for active earthworks sites to be managed with erosion and sediment control measures. It was applied as an average factor and verified through local knowledge and experience at well managed earthworks sites. This was considered to reflect the requirements in the RFP for active earthworks sites to be managed with erosion and sediment control measures.

There were exceptions within the catchment such as:

- The golf course development in the Duck Creek catchment is treated by sediment ponds with flocculation and therefore the sediment removal at this site is likely to be higher than 0.5
- The Silverwood development in the Pauatahanui catchment is classified as 'bare soil' using the aerial photography, but a site visit in February 2010, it was identified that the active earthworks phase was complete, but grass had not fully established.

No factor was applied to bare soil or cropping land as classified by the NZ Land Cover Data Base.

N.15 Sediment Delivery Ratio (SDR)

The best method to verify the proportion of the theoretical sediment that is actually delivered to receiving environment is to compare the USLE estimates with observed data.

While we had some observed data for the Project catchments, most of this data was collected in flows that were less than the events modelled for the average annual sediment yield. Therefore it was determined that

the most appropriate method was to cross check the sediment yield estimates generated using the USLE with the NIWA Suspended-Sediment Yield Estimator Tool. The comparison was considered on the basis that within each model the other factors are equivalent in terms of catchment size, geology, land use and hydrology. Any comparison should present a linear relationship between the two models and allow an SDR to be used for all the sediment rating curves.

Following the data verification process an SDR of 0.17 was selected for all catchments. This was consistent with a correlation between the two models for all catchments with the exception of the Pauatahanui. The decision to use a single SDR factor was also consistent with the conservative approach used throughout the modelling and erosion and sediment control methodology.

N.16 Application of USLE in the Existing Situation

All of the catchments that either drain to the Porirua Harbour, or are crossed by the Project alignment, were described using the above USLE factors of rainfall, land cover, slope and soils (refer to Section N.4 for a detailed explanation of these factors). Table N9 describes the Geographical Information Systems (GIS) data sets that were used to describe these factors for the affected catchments:

Table N9 GIS Datasets Used to Describe Catchments

GIS Dataset	Application
Rainfall Gauge records	To calculate the 2 year 6 hour rainfall depths to calculate the rainfall erosivity (R) factor
NZ Land Resource Inventory (NZLRI)	To calculate the soil particle size and gravel content for the calculation of the soil erodibility (K) factor
New Zealand Land Cover Database Version 2	To calculate the land cover for the calculation of land cover (C) factor
Aerial Photography: Porirua City Council – Rural (.5m, 2009); Urban (scale 1:500, 2009) Kapiti Coast District Council - Rural (1m, 2006); Urban (scale 1:500, 2006) Wellington City Council - Rural (.5m, 2009); Urban (scale 1:500, 2009)	To calculate the impervious land area and the land that is in active earthworks (bare soil), for the calculation of land cover (C) factor
Contours - Digital elevation model Digital elevation model created to a resolution of 5 metres. Based on input contour data sources of differing accuracy levels.	To calculate the steepness and length of slopes, to calculate the length slope (LS) factor

N.17 Verification of the Universal Soil Loss Equation Results

Verification of USLE sediment yield estimations has been undertaken by comparing the calculated average annual sediment yield against literature (namely data collected during a Ministry of Works study of catchments

draining to the Pauatahanui Inlet in the 1970s and described in Healy (1980)) and the NIWA Suspended-Sediment tool. The results of this comparison are shown in **Table N10**.

Table N10 Sediment Yield Estimates (tonnes/yr)

Large Catchments	NIWA Suspended Sediment Tool	USLE from This Study	Ministry of Works Study (Healy, 1980)	Difference USLE/Healy (%)	Difference USLE/NIWA (%)	Difference NIWA/Healy (%)
Duck	1263	1144	1650	-31	-9	-23
Horokiri	5443	5296	3980	33	-3	37
Kenepuru	1168	826	N/A	N/A	-29	N/A
Pauatahanui	3409	5889	4670	26	73	-27
Porirua	3974	3970	N/A	N/A	0	N/A
Ration	841	793	470	69	-6	79
Te Puka/Wainui	1175	1520	N/A	N/A	29	N/A
Whareroa	1906	2022	N/A	N/A	6	N/A

As can be seen from Table N10, estimation of sediment yield calculated using the USLE, when compared with the NIWA Suspended-Sediment Tool, is in the correct order of magnitude. The most significant differences between the theoretical USLE calculation and the NIWA data are in the Kenepuru, Pauatahanui and Wainui/Te Puka catchments. In the Kenepuru, the NIWA data may not be accurately reflecting the urbanisation of the catchment and hence over estimating the sediment yield, in the Pauatahanui the NIWA data will not reflect 2010 active earthworks which increase sediment yields, something the USLE calculation has taken into account. In the Wainui/Te Puka the USLE calculation of the erosivity and steepness factors has produced a more conservative result.

The comparison to data described by the Healy (1980), there are mixed results when compared to the USLE calculation and the NIWA data. It should be noted that this data set is on average only a three year time period during the 1970s and does not necessarily reflect a long term average as the USLE and NIWA does. The data described by Healy (1980) however does confirm order of magnitude estimates as calculated using the USLE.

A further breakdown by catchment for the USLE estimates is provided in **Table N11.** This table summarises the results of the USLE and provides a useful measure of the relative sediment yields per catchment by displaying sediment on a yield per unit area basis.

Table N11 Comparison of USLE Sediment Yield per Catchment

USLE Estimate (Sediment Delivery Ratio 0.17)

Transmission Gully Project Technical Report 15: Assessment of Water Quality Effects

Catchment	Annual Sediment Yield (tonnes)	Catchment Area (km²)	Annual Tonnes per km² (g/m²)	Comment
Duck	1144	11.6	99	Built
Horokiri	5296	33.1	160	Rural/agriculture
Kenepuru	826	12.7	65	Built
Pauatahanui	5889	41.7	141	Rural/agriculture
Porirua	3970	41.1	97	Built
Ration	793	6.8	117	Built
Te Puka/Wainui	1520	7.7	197	Rural/agriculture (steep)
Whareroa	2022	16.7	121	Rural/agriculture (flat)

Appendix 15.0 Soil Erodibility Calculation Information

0.1 Introduction

An assessment of the environmental effects of the Transmission Gully roadway project is to be carried out. As part of the assessment, an estimate regarding volumes of material eroded from the landscape must be prepared. The general method to be used for estimating the volume of eroded material is to use the Universal Soil Loss Equation (Goldman et al., 1986). This equation requires the calculation of five main factors. This document describes the method used to estimate one of these five factors, the Soil Erodibility Factor, K. The method described by has been summarised and simplified in order to obtain a conservative and time-effective method for estimating K for a large number of soil samples where limited information is available.

O.2 Background

The preferred method for determining K is to use the nomograph method (Goldman et al., 1986). This method requires that an accurate particle size analysis be conducted to determine percentage of clay, silt, sand and very fine sand for exposed soil layers. With any two of the soil particle percentages (clay, silt and sand) the nomograph, shown in **Figure N1** can used to determine the K value.

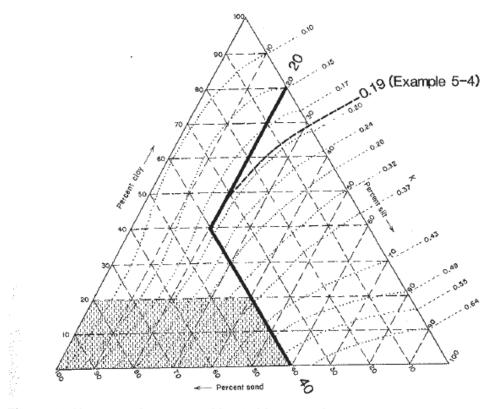


Figure O1 Nomograph presented by Goldman et al., 1986

The value determined can then be adjusted for organic matter and rock content, as the nomograph assumes 2% organic matter and 0-15% rock content. Tables of correction values are given by Goldman for this purpose.

Another nomograph method is used by the United States Department of Agriculture (USDA) and is the basis for the nomograph method provided by Goldman et al. This nomograph is slightly more complex and was originally determined by Wischmeier (1971).

A second method is to use the soil erodibility equation as presented by the USDA

ssessment of Water Quality Effect

Equation A

$$K = \frac{2.1 \times 10^{-4} \times M^{1.14} \times (12 - a) + 3.25(b - 2) + 2.5(c - 3)}{100}$$

Where M is the percentage of silt plus the percentage of very fine sand multiplied by the percentage of soil that is not clay, 'a' is the percentage of organic matter (rounded to the nearest whole number), 'b' is the soil structure code (1,2,3 or 4) and 'c' is the saturated hydraulic conductivity code (1,2,3,4,5 or 6).

The soil structure code is defined in the following way:

Table O1 Soil Structure Code

Soil Structure Code	Description
1	Very Fine Granular
2	Fine Granular
3	Medium or Course Granular
4	Blocky, Platy or Massive

Similarly the saturated hydraulic conductivity code is defined:

Table O2 Hydraulic Conductivity Code

Hydraulic Conductivity Code	Saturated Hydraulic Conductivity Range µm/sec	Saturated Hydraulic Conductivity Classes 1993
6	<0.30	very low to mod. low
5	0.30 to <1.20	mod. low
4	1.20 to <4.80	mod. high
3	4.80 to <15.00	mod. high to high
2	15.00 to <30.00	high
1	≥30.00	high to very high

In all of the above methods K is calculated in US Imperial Units of tons/acre per unit of rainfall erosion index (100ft.tons/acre x in/hr).

o.3 Limitations

The limitations to the two nomograph methods are that digital computation is not efficient for large numbers of soil samples. The simplification of the nomograph by Goldman et al. does not give good evidence of how hydraulic conductivity and soil structure have been accounted.

More generally Goldman et al. lists the limitations of the Universal Soil Loss Equation:

It is empirical, this means it does not represent the actual erosion process and has been created from specific sets of data. USDA notes that the nomograph and equation methods do not work for 'certain Oxisols in Puerto Rico or the Hawaiian Islands, some soils with Andic properties, organic soil materials, low activity clays, and some calcareous or micaceous soils'.

It predicts average annual soil loss and is unlikely to accurately predict soil erosion if 'higher than normal' rainfall exists. Note rainfall data is primarily from US sources.

It estimates sheet and rill erosion NOT Gully erosion. (Concentrated flows).

Sediment deposition is not calculated.

O.4 Application

The particular situation in which the Soil Erodibility Factor is to be used has some limitations.

The soil samples which will be used to approximate the percentages of soil particles are large and do not distinguish between layers. Trial pit data with depths of up to 5m was averaged to obtain a bulk percentage of sand, silt clay and gravel (not very fine sand). Many of the soil samples contain very high rock/gravel content. Hydraulic conductivity data is not available for any of the soil samples.

It is desired that results obtained by a soil erosion calculation be order of magnitude correct and can be used as a relative indication of erosion potential over a large geographical area.

o.5 Method

In order to obtain sensible results for the Soil Erodibility Factor that will be appropriate to the application the following method shall be used.

Equation A shall be used as the primary calculation method.

In order for this equation to be used, the percentage of organic matter, a, must be determined as well as the soil structure code, b, and saturated hydraulic conductivity code, c.

The soil data that has been supplied only contains soil content percentages, so the two codes must be determined based on this data. The organic matter content can be estimated (assume 0-2%).

O.6 Soil Particle Percentages

The soil content has been characterised in terms of percentage sand, silt, clay and gravel. The percentages of fine material (sand, silt and clay) shall be adjusted to sum to 100%, the gravel content shall remain as an average bulk percentage.

o.7 Soil Structure Code

The soil structure code given in **Table O3** can be estimated based on gravel content and by eliminating code level 4, this assumes all soils are granular rather than massive. The estimation will be linear.

Table O3 - Soil Structure Code

Percentage of Gravel	Soil Structure Code
<34	1
34-67	2
>67	3

O.8 Saturated Hydraulic Conductivity Code

The USDA provides figures for estimating saturated hydraulic conductivity based on percentage of fines content, shown in Figure

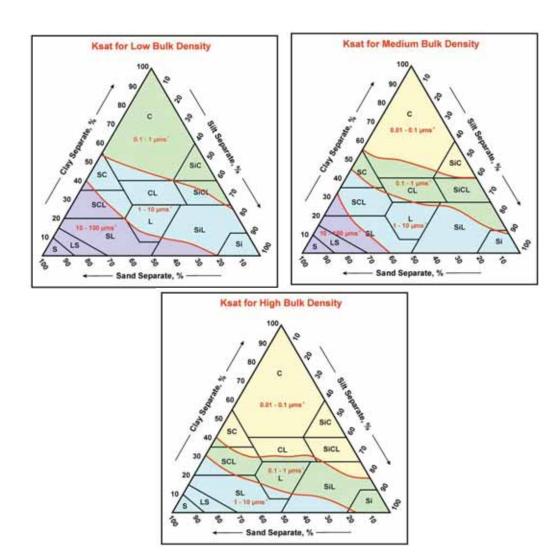


Figure O2 Saturated Hydraulic Conductivity

If it is assumed that all soils have a medium bulk density then a conservative approximation to the saturated hydraulic conductivity code is given in Figure O3.

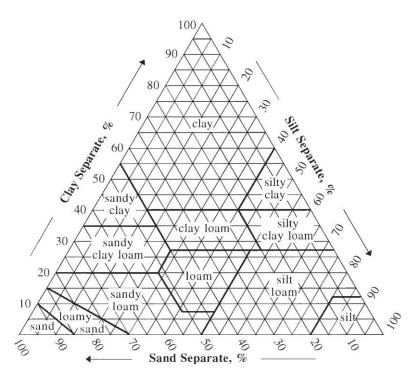
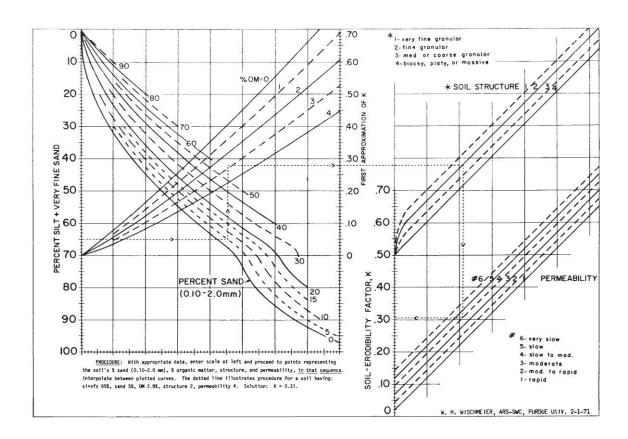


Figure O3 - Saturated Hydraulic Conductivity Code Approximation

When programmed into an excel spreadsheet:

c=IF(A>0.6,6,IF(B>0.6,2,IF(B<(-(5/9)*C+0.5),5,4)))

Where A is the proportion of clay, B is the proportion of sand and C is the proportion of silt and c is the saturated hydraulic conductivity code.


o.9 Rock Content

The soil erodibility factor, K, will then be adjusted for rock/gravel content based on the tables given by Goldman et al. (1986) shown in Table O4. Corrected factors replace the calculated K factor. This shall be carried out by using the closest match to the table factors rather than interpolating or extrapolating.

Table O4 Soil Erodibility Factor

W. M. and R. and an	K values	adjusted for rock follows	content as
Unadjusted K value from Fig. 5.6	15-35%	35-60%	60-75%
0.10	0.05	0.05	0.02
0.15	0.10	0.05	0.02
0.17	0.10	0.05	0.02
0.20	0.10	0.05	0.02
0.24	0.15	0.10	0.05
0.28	0.15	0.10	0.05
0.32	0.17	0.10	0.05
0.37	0.20	0.10	0.05
0.43	0.24	0.15	0.10
0.49	0.28	0.15	0.10
0.55	0.32	0.17	0.10
0.64	0.37	0.20	0.15

Figure O4 USDA Nomograph

Appendix 15.P

Soil Test Pits

	Gravel	23%	19%	46%	%0	26%	%0	35%	%0	79%	%0	20%	3%	%0	%99	34%	31%	32%	71%	%59	%99	%59	%59	48%	16%	%6	45%	100%	83%	20%	81%	78%	24%	82%	18%	44%	20%	76%	46%	43%
	SIT	23%	43%	30%	91%	74%	100%	%59	100%	25%	100%	15%	%0	100%	44%	31%	43%	47%	32%	35%	%6	35%	18%	23%	84%	91%	%0	%0	17%	34%	19%	%59	%91	4%	3%	31%	18%	%6	21%	21%
	Sand	24%	13%	25%	%0	%0	%0	%0	%0	46%	%0	35%	%99	%0	%0	19%	%L	13%	11%	%0	35%	%0	18%	25%	%0	%0	%0	%0	%0	%0	%0	%9	%0	14%	33%	%8	15%	15%	%0	%0
Average	Clay	%0	722%	%0	%6	%0	%0	%0	%0	%0	%0	%0	31%	%0	%0	16%	19%	8%	3%	%0	%0	%0	%0	2%	%0	%0	22%	%0	%0	16%	%0	%0	%0	%0	45%	17%	18%	47%	%0	%0
Total Depth		3000	3800	4000	2800	1300	3300	3100	3000	800	2900	550	3600	4000	3600	3900	3800	4100	4200	4400	1600	2300	2000	3000	300	3500	3300	3100	2500	2400	2800	3000	3400	4200	2200	3800	4200	4700	3600	3500
	Gravel	%59	%09															%6	20%					20%						100%								25%		
~	Silt		32%															26%	15%					15%		100%														
Deep Layer 3	Sand	35%	2%															35%	35%					35%														722%		
	Clay																																					20%		
	Depth	1800	1200															1500	1300					2100		2000				1000								2200		
	Gravel	84%		%59		35%				35%			2%		%59	20%	20%	20%	100%				%59	15%		%59	100%		100%	%59	100%	35%	35%	84%	15%	84%	20%	30%	%59	100%
2	Sit		%59			%59	100%								35%	15%	35%	35%	35%				35%	20%		35%				35%		%59	%59					15%	35%	
Middle Layer 2	Sand	16%	32%	35%						%59			%56			35%	15%																	16%	32%	16%	15%	2%		
2	Clay																	15%						35%											20%		32%	20%		
	Depth	200	1000	2800		700	400			009			2500		2500	2100	1700	2200	2000				1000	400		200	1500		2000	300	2000	2500	2300	3700	2000	2000	2100	2200	1700	1500
	Gravel					16%		35%				20%			35%	15%	15%	16%	35%	%29	26%	%29	%59	%59	16%			100%	16%		35%			%59	20%		20%	20%	35%	
	Sit	100%	35%	100%	%16	84%	100%	%59	100%	100%	100%	15%		100%	%59	20%	20%	84%	20%	35%	%6	35%		35%	84%	100%			84%	%59	%59	%59	100%	35%	35%	%59	35%	35%	%59	100%
Top Layer 1	Sand		2%									35%									32%		35%									35%			15%		15%	15%		
	Clay		%09		%6								100%			35%	32%		15%								100%			35%						35%				
	Depth	700	1600	1200	2800	009	2900	3100	3000	200	2900	250	1100	4000	1100	1800	2100	400	006	4400	1600	2300	1000	200	300	1000	1800	3100	200	1100	800	200	1100	200	200	1800	2100	300	1900	2000
	dole No.	TP01	TP02	TP03	TP04	TP05	TP06	TP07	TP08	TP09	TP10	TP11	TP12	TP13	TP14	TP15	TP16	TP17	TP18	TP19	TP20	TP21	TP22	TP23	TP24	TP25	TP26	TP27	TP28	TP29	TP30	TP31	TP32	TP33	TP34	TP35	TP36	TP37	TP38	TP39

SINCIAIR KNIGHT MERZ

PAGE 297

16%	%0	21%	21%	44%	23%	35%	46%	93%	41%	42%	12%	%99	74%	%19	78%	75%	87%	77%	74%	%08	43%	%//	28%	39%	%0	18%	1%	46%	42%	40%	53%	%0	70%	27%	13%	%89	70%	23%	%99	82%	35%	20%
27%	100%	43%	%62	%99	63%	%59	16%	%/_	38%	7%	48%	11%	22%	24%	11%	14%	%0	%0	24%	4%	19%	%0	35%	24%	19%	24%	22%	31%	%8	31%	10%	%59	48%	35%	22%	19%	32%	11%	23%	19%	36%	34%
16%	%0	%0	%0	%0	%0	%0	38%	30%	18%	33%	34%	16%	4%	14%	10%	11%	13%	18%	3%	17%	16%	23%	18%	72%	1%	13%	7%	10%	22%	10%	31%	35%	%8	38%	32%	%6	20%	36%	7%	%0	24%	12%
45%	%0	%0	%0	%0	14%	%0	%0	%0	4%	19%	%9	7%	%0	%0	7%	%0	%0	2%	%0	%0	23%	%0	70%	12%	%08	14%	43%	13%	78%	18%	%9	%0	22%	%0	%0	2%	25%	%0	4%	%0	3%	4%
3300	4550	3400	4800	3500	2500	2800	3500	2000	7000	4300	3450	2900	4400	1900	4600	3700	2300	2600	4000	2000	3600	2600	2600	3800	4000	3650	4000	3500	3600	2100	4450	2100	2700	2600	3800	2400	4200	3500	3800	3800	4400	4000
84%				84%	84%		%59		15%	%08		%08	%26		84%	%08	100%	85%	84%	84%							2%		%59		%59		20%	84%			84%	%59	84%		20%	16%
				16%	16%				35%		35%					10%										%59	%56						2%								15%	200%
16%							35%			70%	%59	70%	2%		16%	10%		15%	16%	16%						35%			35%		35%		35%	16%			16%	35%	16%		35%	70.0
									20%												100%							100%														200
200				1500	200		200		200	700	400	2300	3300		2400	3100	1100	2200	700	4300	200					006	200	450	2300		3550		009	800			400	2600	1600		2600	0000
4%		84%	35%	35%	15%		%6	84%	20%	15%			35%	%08	100%	35%	84%		75%	%59	20%	84%	%59	%09		%59		%59		84%	35%		35%		84%	%06	16%	15%		84%	16%	707.0
30%		16%	%59	%29	20%		35%		15%		%99	%59	%59			%59			25%		20%			2%	2%	35%	20%	35%			2%		20%	20%		2%	25%	35%	%59	16%	75%	1011
16%							%99	16%	35%	35%	35%			70%			16%	35%		35%	15%	16%	35%	35%						16%	%09			20%	16%		%6	20%			%6	
20%					35%					20%	%6	35%						%59			15%				%56		20%		100%				15%			2%	20%		35%			
2700		2300	2900	800	1000		200	200	3500	1600	2200	200	400	1350	1500	300	009	200	3000	400	2100	1600	1100	2500	3000	1000	3200	2500	1000	1000	200		700	1600	009	1800	2100	700	400	3300	1400	00007
						35%	20%	26%	35%	20%	20%	%59		16%	10%	%59	%59	%59	35%	35%	20%	%59												15%			%6	35%	%59	%59		, c L ,
%59	100%	100%	100%	100%	100%	%29	15%	%6	%59	15%	35%		100%	84%	%02				%59	%59	25%		%09	%09	%09	%09	35%	35%	100%	%09	%09	%59	%59	20%	%59	%09	26%	%59	35%	35%	%59	ČL
							35%	35%		35%	15%				10%	35%	35%	35%			72%	35%	2%	2%	2%	10%	30%	%59		2%	2%	35%		35%	35%	35%	35%					
35%												35%			10%								35%	32%	35%	30%	35%			35%	35%		35%			2%					35%	
100	4550	1100	1900	1200	1000	2800	2500	1500	3000	2000	850	100	700	220	700	300	009	200	300	300	1000	1000	1500	1300	1000	1750	300	220	300	1100	700	2100	1400	200	3200	009	1700	200	1800	200	400	
TP40	TP41	TP42	TP43	TP44	TP45	TP46	TP47	TP48	TP49	TP50	TP51	TP52	TP53	TP54	TP55	TP56	TP57	TP58	TP59	TP60	TP61	TP62	TP63	TP64	TP65	TP66	TP67	TP68	1P69	TP70	TP71	TP72	TP73	TP74	TP75	TP76	TP77	TP78	TP79	TP80	TP81	000

%95	15%	84%	79%	%09	%89	36%	12%	54%	%59	78%	28%	41%	42%	31%	23%	28%	52%	%59	2%	%59	30%	83%	39%	%0	%0	%08	20%	%0	8%	%0	20%	84%	%0	%0	%0	%0	%0	%9	%0	12%	53%	
36%	47%	%0	93%	40%	22%	21%	93%	46%	34%	16%	42%	37%	43%	45%	33%	45%	48%	35%	40%	35%	%59	17%	30%	85%	%99	16%	42%	23%	23%	35%	34%	%0	35%	35%	35%	81%	%89	34%	37%	46%	47%	
%0	36%	16%	11%	%0	11%	%8	21%	%0	1%	%0	%0	22%	14%	23%	70%	%91	%0	%0	25%	%0	%9	%0	31%	15%	%91	%0	%0	36%	36%	%59	%6	16%	%59	%59	%59	16%	15%	22%	%0	%0	%0	
2%	%0	%0	%0	%0	%0	%0	4%	%0	%0	3%	%0	%0	%0	%0	24%	11%	%0	%0	%0	%0	%0	%0	%0	%0	18%	4%	%	%8	4%	%0	38%	%0	%0	%0	%0	%0	17%	2%	%89	41%	%0	2
3900	4200	1950	3000	2500	1500	1200	4200	3900	4000	4500	1650	4150	4150	2950	4400	2300	2300	3550	2100	4200	3400	2500	2200	3450	2750	006	2200	2500	3100	3950	3600	3700	3900	4300	3400	1650	4200	1650	4050	4750	3950	2272
							15%		84%				%09	100%		%59							26%						15%											%59		
35%			100%				20%						20%										%6		35%				35%								35%					
							35%		16%				70%			35%							35%		%59				20%								%59					
%59																																								35%		
300			400				2200		300				2400	009		100							1550		150				006								009			006		
%59	20%		25%	%59	84%	84%	10%	%59	84%	84%	%59	%59	35%	15%	20%	70%	%59	%59			84%	100%				100%	%59		10%		72%							%6			, ou	%69
35%	40%		20%	35%		16%	%08	35%	16%	16%	35%		%59	20%	15%	20%	35%	35%	35%				35%	35%	%29		35%	35%	20%		72%		35%	35%		%59	84%	16%	35%	35%	0	35%
	40%		25%		16%							35%		35%	15%	15%			%59		16%		%59	%59	35%			%59	%09				%59	%59		35%	16%	75%				
							10%								20%	15%													10%		20%								%59	%29		
3100	3100		1300	2200	1000	300	1700	3000	2600	4100	1400	2600	220	1800	2100	1700	1300	2750	1400		1200	1300	200	800	950	200	1700	1500	1100		2700		3300	3900		006	1600	1100	3800	1000	0000	3700
35%		84%	35%	25%	35%	70%		16%	16%	15%	16%		10%	10%	25%	20%	35%	%59	15%	%59		%29				26%					2%	84%										
%59	%59		%59	75%	%59	%02	%59	84%	84%	20%	84%	100%	%08	%08	20%	35%	%59	35%	20%	35%	100%	35%	100%	100%	%02	35%	%59	%08	100%	35%	%09		35%	35%	35%	100%	%59	%02	%59	%59	,000	%001
	35%	16%				10%	35%						10%	10%	25%	15%			35%											%59	35%	16%	%59	%59	%59			15%				
										35%															30%	%6	32%	20%									32%	15%	35%	35%		
200	1100	1950	1300	300	200	006	300	006	1100	400	250	1550	1200	220	2300	200	1000	800	700	4200	2200	1200	450	2650	1650	400	200	1000	1100	3950	006	3700	009	400	3400	750	2000	220	250	2850	C L	/20
TP84	TP85	TP86	TP87	TP88	TP89	TP90	TP91	TP92	TP93	TP94	TP95	7P96	TP97	TP98	TP99	TP100	TP101	TP102	TP103	TP104	TP105	TP106	TP107	TP108	TP109	TP110	TP111	TP112	TP113	TP114	TP115	TP116	TP117	TP118	TP119	TP120	TP121	TP122	TP123	TP124	TD10E	C714

0% 69% 27% 39%

4% 61% 67% 67% 59% 55% 0% 68 0%

																			_																						+
36%	28%	%26	12%	14%	21%	33%	36%	44%	30%	25%	24%	%0	73%	%0	31%	24%	15%	30%	37%	23%	25%	22%	15%	%09	28%	20%	23%	45%	%CI	15%	80%	32%	23%	20%	15%	%88	%86	%0	%8	22%	34%
10%	%0	%0	35%	33%	%8	%0	%0	14%	93%	%/	4%	48%	21%	35%	%0	44%	61%	%6	33%	10%	%0	10%	35%	%0	%6	31%	10%	0.00	%07	30%	20%	%0	%0	%0	35%	%0	%0	22%	30%	%0	%0
%0	42%	%0	%0	%0	41%	16%	22%	30%	%0	%0	%0	%0	%0	%0	%0	%0	4%	13%	23%	12%	32%	13%	%0	36%	3%	%	%0	40%	% 00	%0	%0	17%	42%	20%	%0	12%	7%	%6	36%	36%	, 0
2500	4450	1500	1100	3000	4600	3700	3850	3300	3900	3000	3300	3300	2200	3450	4000	1650	1150	1600	2300	1500	2000	1350	400	3500	4100	4400	3400	3930	1400	3900	3600	3700	1400	1500	300	4400	3150	4200	3300	4300	
20%						%08		84%		84%	%59				84%	%59		84%	15%		%59	%59		%02		20%	84%	02.00	02.00									72%	35%		
	100%				35%	20%		16%		16%	35%				16%							35%				15%	2000														
15% 35	10				38	7(16	84% 16	16	35					35%		16	70% 1			35		<u> </u>			16%		35%									20%			
===					%59				87							35			77		35%			15%	%59	33	7	-	γ γ										%59		
1650	1400				2100	400		200	1900	800	300				1500	800		009	1100		200	450		200	200	3900	2150	0001	3000									2500	1600		
%29		20%	%59	100%						35%	20%	100%	20%		%59			%59		61%					%02		%59	\U_0\	02.00	800		100%	16%					%59	25%	%02	
35%	35%	%08			%59	35%	%59	35%	20%	%59	35%		35%		35%	35%			35%	2%	35%	%59		35%	20%	26%	35%	33%	35%	900	84%		84%	%59			100%				
			35%		35%				20%		15%		15%			%59		35%		722%					10%	%6					16%							35%	75%		
	%59					%59	35%	%59											%29	2%	%59	35%		%29	6	35%	7607	02.00						35%						30%	
200	2600	400	200	200	1000	006	700	1500	1600	1600	006	100	1500		2300	200		400	800	009	700	200		1900	3550	100	700	7430	000	2007	2900	1900	200	750			3000	1200	1300	2400	
35%			20%	20%		%59	10%		%09		35%	20%	20%	%59			20%						20%			35%	2%	370	16%	55%					20%			%59			
%29	%59	100%	15%	15%	%59	35%	30%	%59	20%	%59	%59		15%		100%	%59	15%	%29	100%	84%	100%	%29	15%	100%	100%	92%	95%	93%	84%	15%	65%	%59	35%	35%	15%	%88	%59		%59	20%	
			35%	35%				35%	20%	35%		20%	35%	35%		35%	91%					35%	35%							30%	35%				35%						
	35%				35%		%09											35%		16%												35%	%29	%59		12%	35%	35%	35%	20%	
350		1100	006	2800	1500	2400	3150	1300	400	009	2100	3200	700	3450	200	350					800	400	400	1400	350	400	550	000	2400	3900	700			750	300	4400		200	400	1900	
TP128	TP129	TP130	TP131	TP132	TP133	TP134	TP135	TP136	TP137	TP138	TP139	TP140	TP141	TP142	TP143	TP144	TP145	TP146	TP147	TP148	TP149	TP150	TP151	TP152	TP153	TP154	TP155	TP150	TD150	TP159	TP160	TP161	TP162	TP163	TP164	TP165	TP166	TP167	TP168	TP169	

32% 20% 48%

7% 24% 16%

51% 0% 5% 53% 0% 0% 13% 41% 41% 6% 6% 6% 69%

	41%	61%	%09	61%	38%	20%	%19	%0	%0	%0	%0	20%	40%	%0	24%	%09	28%	52%	61%	3%	
	%0	33%	27%	76%	78%	16%	13%	81%	%0	%0	%0	35%	41%	82%	13%	2%	4%	13%	2%	%89	
	2%	%0	%0	%8	79%	34%	13%	%6	100%	100%	100%	15%	16%	16%	70%	37%	38%	78%	37%	%0	
	24%	2%	13%	2%	%8	%0	%/	10%	%0	%0	%0	%0	%0	2%	43%	%0	%0	%/	%0	29%	
	4000	3700	3700	4550	2000	4700	2000	3850	1900	3500	3950	1200	1000	3900	4500	3300	3800	3600	2500	1150	
	%59	%59	%08	15%	20%	20%									70%	%59	%59				
		32%	70%	35%	15%	15%		100%						%59	15%						
	32%				35%	35%								35%	15%	32%	32%				
				20%											20%						
	009	2600	1950	150	3700	3800		2300						1600	3900	2600	3100				
REPORT 15: Assessment of Water Quality Effects	30%		%59	%09	2%		%02						20%		35%	35%		%59	%59	16%	
			35%	70%	%09	100%	10%	35%					35%	92%		15%	35%			84%	
				20%			10%						15%	4%	%29	20%	61%	35%	35%		
	%07	100%			35%		10%	92%						4%			4%				
	2800	200	950	1900	1100	200	3600	009					800	1700	300	200	400	2900	2000	200	
	%59	%59	4%	%59		%59	%09					20%			%59	%59	%59		44%		
		35%	32%	35%	100%		70%	%59				35%	%59	100%				%59	12%	%59	
						35%	70%	32%	100%	100%	100%	15%	32%		32%	35%	32%		44%		
nsmission Gully P	35%		%19															35%		35%	
	009	006	800	2500	200	700	1400	950	1900	3500	3950	1200	200	009	300	200	300	700	200	950	
	TP172	TP173	TP174	TP175	TP176	TP177	TP178	TP179	TP180	TP181	TP182	TP183	TP184	TP185	TP186	TP187	TP188	TP189	TP190	HA191	

Appendix 15.Q Sediment Rating Curves

Q.1 Development of Sediment Rating Curves

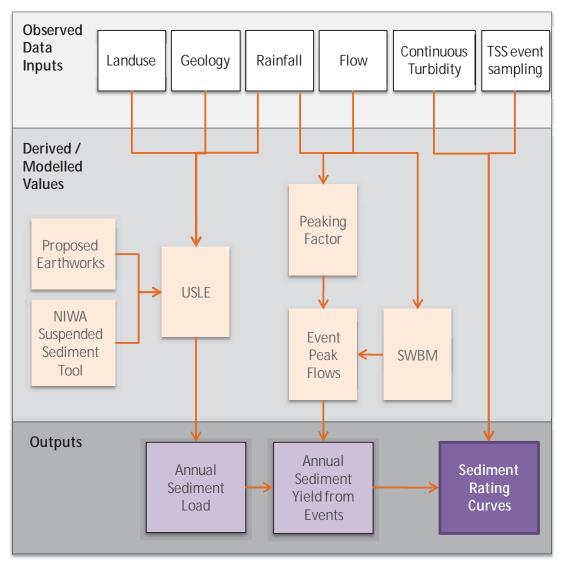
Sediment rating curves were required for estimating sediment yields from various catchments within the Project area. These curves were used to predict sediment yields for catchments during the construction of the Project, based on a combination of observed and theoretical data. The curves for each catchment were adjusted to model future scenarios including sediment yields during the construction period and long-term when the Project is in operation.

These curves were developed using observed sediment (turbidity calibrated with observed TSS, as sediment) and flow data. Daily flow is generated by the Soil Moisture Water Balance Model (SMWBM), which is used to calculate sediment yields and peak flows.

The mathematical equation used to describe the relationship between sediment and peak flow is a power curve of the general form:

Equation 1

$$S = AQ_p^B$$


Where; S is the sediment yield in kg and Q_0 is the event peak flow in m^3 /sec.

This equation is commonly used for the development of sediment rating curves. The relationship is used by Hicks (1994) and a slightly modified version that includes a base flow factor is used by Sednet (Wilkinson, Henderson & Chen, 2005).

The observed data was used to adjust the sediment rating curve shape, this determined the exponent B. An exponent of 1.9 was used for all catchments. This relates well to exponents used by others (Hicks, 1996 and Wilkinson, 2004). The coefficient A factor was determined when the mean annual sediment yield calculated using the SMWBM simulated flow record matched the annual mean sediment yield calculated using the USLE for each catchment. **Appendix 15.R** lists A and B values used for each catchment. Table 15.88 provides a schematic of how sediment rating curves were developed.

Table 15.80 Sediment Rating Curves Calculation Method

Q.2 Curves Shaped from Observed Data

Observed data from turbidity loggers in the Horokiri and Pauatahanui Streams was analysed and that which was deemed the most accurate selected for use in development of the sediment rating curves. An additional data point was also selected from literature data from the July 1976 storm event (Curry, 1981) in the Horokiri, Pauatahanui, Ration and Duck streams. The sediment values obtained for events with measured or calculated peak flow were plotted against the sediment curves. It has been found that sediment yield is best correlated with peak flow (Hicks, 1994) and on this basis individual curves were developed. Peak flow is also a useful value as it is easily observed and requires no transformation when calculating results from the curve.

Data supplied by the National Water and Soil Conservation Organisation (1981) has also been used for the four streams that drain to the Pauatahanui Inlet.

Q.3 Initial Curve Fitting Based on Observed Data

An initial curve was fitted to the data for each stream for where observed data was available using least squares regression. As a large proportion of the observed data was from low flow events, this approach was

not considered to give the best estimation of the sediment peak flow relationship during larger events. To address this issue an estimate of the average annual sediment yield was calculated using the USLE and transformed to an annual yield estimate from the peak flow record generated using SMWBM to adjust the sediment rating curves (see **Section Q.4** below).

Q.4 Stream Flow from Soil Moisture Water Balance Model

The Soil Moisture Water Balance Model (SMWBM) was developed to generate daily streamflow time series for ungauged catchments and to extend observed records using rainfall data. The model uses representative rainfall to simulate surface runoff and groundwater discharge in these catchments. This is compared and verified against flow in gauged catchments. Details on the methodology to produce this model are further outlined in SKM's report "Generation of daily stream flow time series for selected catchments" (2010c).

The model produced mean and peak daily stream flow at the mouths of all catchments in the Transmission Gully area. Mean and peak daily flows were also simulated to the locations of the turbidity loggers.

The SMWBM model has three purposes:

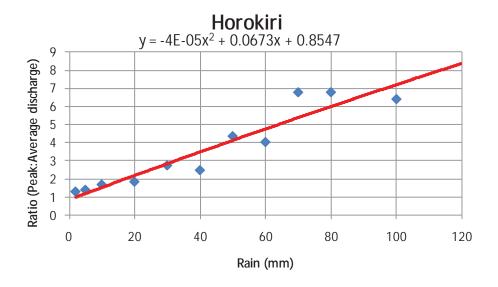
- To estimate peak flows at the turbidity logger sites
- To provide inflows for the estuary model
- To provide a long term flow record for testing the estimate of average annual sediment yield derived from the sediment rating curves.

Q.5 Soil Moisture Water Balance Model

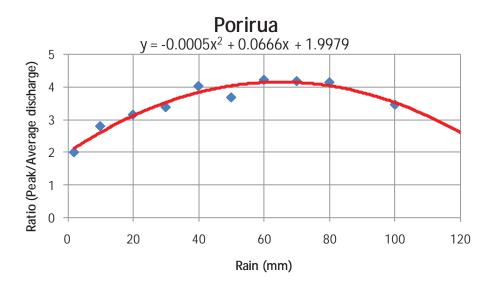
The driver of sediment yield from the catchments is rainfall. The nature of the stream beds are such that very little of the sediment load is from erosion of bed material. Thus days without rainfall should not be included in an assessment of long term sediment yield from the catchments.

The SMWBM was used to generate daily peak flows for all catchments from 1960 to 2010. Sediment yield has been related to peak flows. Accordingly a time series of peak daily flows is required to estimate the long term sediment yield from the catchments.

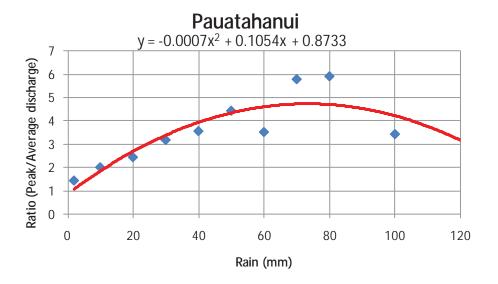
Q.6 Peaking Factors


A relationship between daily rainfall and the corresponding ratio of peak to average flow was evaluated using the observed records for the Horokiri, Porirua and Pauatahanui streams. The results were grouped into rainfall depth categories and the peak/average flow ratio for was plotted against each category rainfall.

Functions relating daily rainfall to peak/average flow ratio were derived from the plotted data. Plots showing these relationships are included in **Figure 15.84** to **Figure 15.86**.


The data showed a decreased ratio between peak and average daily flows as rainfalls increased over a certain threshold. This is likely to be related to the increased base flow and slower receding limb in large events.

SINCLAIR KNIGHT MERZ



■ Figure 15.84 Horokiri Stream: Peak: Average Event Flow Versus Daily Rainfall

■ Figure 15.85 Porirua Stream: Peak: Average Event Flow Versus Daily Rainfall

■ Figure 15.86 Pauatahanui Stream: Peak: Average Event Flow Versus Daily Rainfall

These relationships were allocated to the catchments feeding into the Porirua Harbour on the basis of catchment similarity to the gauged catchments. Factors to estimate peak daily flows from daily average flows were calculated using the appropriate relationship between daily rainfall and peak/average ratios. The factors for days without rainfall were set to zero because sediment yield without rain is negligible.

Q.7 Estimating Existing Sediment Yield – Observed Data

Both existing and observed data was collected and used in estimating existing sediment yields for each of eight catchments that are crossed by the proposed Project. This section describes the method for collection and use of this data.

Q.8 Existing Data

Existing data from GWRC and the NIWA has been collated and is detailed in Table 15.81.

Table 15.81 Existing Flow, Rainfall, Total Suspended Solids and Turbidity

Data Type	Station Name	Provider	Length of Record
Flow	Pauatahanui at Gorge	NIWA	34 years
	Horokiri at Snodgrass	GWRC	8 years
	Porirua at Town Centre	GWRC	44 years
Rainfall	Various stations – refer to SKM's 2010 report "Generation of daily streamflow time series for selected catchments"	NIWA and GWRC	Variable
Simultaneous total suspended solids and turbidity data	Horokiri at Snodgrass Pauatahanui at Gorge Porirua at Glenside Porirua at Milk Depot	GWRC GWRC GWRC	Approximately 2 years
	Porirua at Kenepuru		

Q.9 Turbidity and Total Suspended Solids Field Data Collection

An assessment was made of the alignment catchments, and sites were selected for event based sampling and installation of turbidity meters for continuous logging of data (**Table 15.82**).

■ Table 15.82 TSS and Turbidity Field Data Collection

Stream	Continuous Turbidity Loggers	Quarterly Grab Samples & Spot Discharges	Event Based Grab Samples
Horokiri Stream	Two sites	A total of 19 sites upstream and	From stream mouth
Pauatahanui Stream	One site	downstream of the proposed highway (see Appendix 15.C)	From stream mouth
Ration Stream	-	riigriway (see Appeliux 15.0)	From stream mouth
Porirua Stream	-		From stream mouth
Duck Creek	One site		From stream mouth
Wainui/Te Puka Stream	-		-
Whareroa Stream	-		-
Kenepuru Stream	-		-
Details of monitoring	These loggers were in place from mid October 2009 and logged turbidity every 15 minutes. Appendix 15.I outlines the turbidity logger installation at each site and how raw data was processed.	Samples were analysed for TSS and turbidity by Hills Laboratories. Samples were collected in the field using bottles supplied by the laboratory and stored on ice for transport. Spot discharge was simultaneously calculated (see Appendix 15.J) at grab sample locations.	Samples were analysed for TSS and turbidity by Hills Laboratories. Samples were collected in the field using bottles supplied by the laboratory and stored on ice for transport. Spot flows were not measured due to health and safety limitations.

All the samples collected in the field were sent by courier to Hill Laboratories in Hamilton for analysis (**Table 15.83**). The location of these sites can be seen in **Appendix 15.C**.

Table 15.83 TSS and Turbidity Analysis Methods by Hills Laboratories

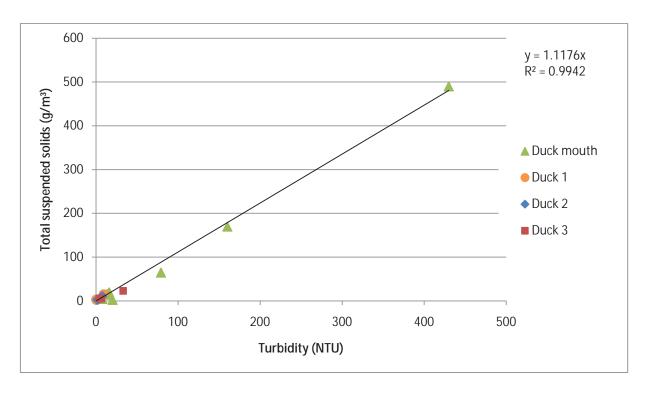
Data Type	Analytical method	Detection Limit (units)
Turbidity	Analysis using a Hach 2100N, Turbidity meter. APHA 3030 E 21 st ed. 2005.	2 NTU's
Total suspended solids	Filtration using Whatman 934 AH, Advantec GC-50 or equivalent filters (nominal pore size 1.2 – 1.5µm), gravimetric determination. APHA 2540 D 21 st ed. 2005	3.0 g/m³

Q.10 Data Analysis

Q.10.1 Turbidity Used to Estimate Total Suspended Solids

Turbidity is a measure of the ability of water to transmit light. Turbidity is affected by water colour and the size, shape, composition and quantity of suspended particles (Packman, Comings and Booth, 1999; Ankcorn, 2003; Lewis, 1996). Higher turbidity values (observed in nephelometric turbidity units (NTU)) indicate higher concentrations of sediment suspended in the water column – since sediment particles can scatter light (Fink, 2005; Ankcorn, 2003). Suspended sediment is an important water quality measurement as it transports many contaminants such as nutrients and microbiological contaminants (Fink, 2005). An increase in turbidity and TSS has also been shown to have a cumulative negative impact on aquatic ecosystems (Packman et al., 1999; Lewis *et al.*, 2002).

Strong positive relationships between turbidity and TSS have been found and documented in many ongoing studies including many by the US Geological Survey, with correlations often exceeding R²=0.95 (Ankcorn, 2003; Lewis et al., 2002; Lewis, 1996; Randerson, et al, 2005; Packman et al., 1999; Fink, 2005). These relationships apply in both large events and low flows (Fink, 2005).


Several of these studies suggest that the collection of real-time turbidity data is an accurate and cost-effective way of estimating TSS. Continuous turbidity data can be calibrated by a small number of sediment samples to define a site specific relationship between turbidity and TSS (Fink, 2005). It should be noted that differences in the physical properties of sediment particles may give different turbidity readings for the same sediment quantity. For instance, organic material absorbs more light than inorganic particles, which means less light will reach the turbidity sensor, producing artificially low turbidity values (Ankcorn, 2003). Despite its limitations, long term turbidity data is still considered a reliable method of estimating TSS in streams. It is advised that relationships are determined on a site by site basis. This is due to differences in catchment geology, slope, aspect, soil, vegetation and landuse. These differences affect the type of sediment present in the stream (and therefore the ability of particles to scatter light), and the hydrologic response of the catchment (Fink, 2005; Lewis *et al.*, 2002).

Q.10.2 Site Specific TSS and Turbidity Relationships

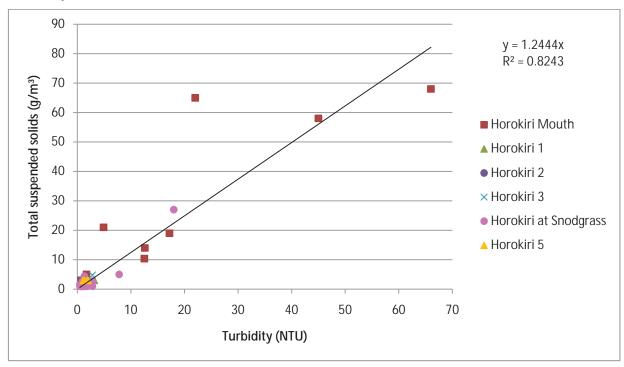
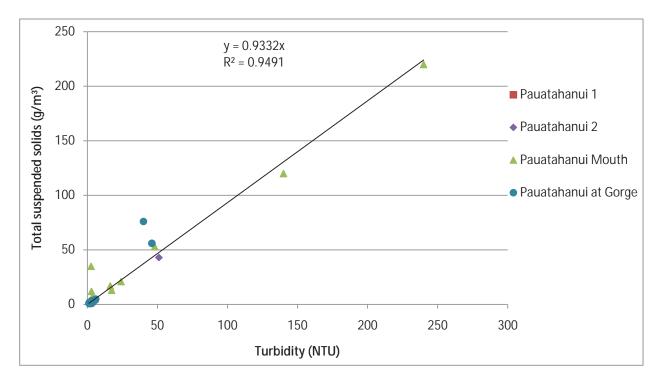

TSS and turbidity data from SKM's water quality characterisation stream grab samples and stream mouth event samples were collated for each stream. Data from GWRC's quarterly stream monitoring was also used where possible. Linear regression analysis was used to establish a relationship between turbidity and TSS for each stream. Using all available data, a strong positive relationship was produced for each stream catchment. Note as observed data has only been collected for smaller events, due to the limited period of monitoring has been occurring, this relationship reflects these smaller events.

Figure 15.87, Figure 15.88 and Figure 15.89 display observed TSS and turbidity at Duck Creek, Horokiri Stream and Pauatahanui Stream respectively. Each graph shows data collected at each sampling location. This includes grab sample sites (which are labelled with the stream name and numbered – e.g. Duck 1, Duck 2, etc), and event sample sites at the each of the stream mouths, e.g. Duck Mouth. Table 15.84 lists the equations for each stream to convert turbidity to TSS. The derived relationship for each stream was then applied to observed continuous turbidity data, thus converting it to continuous TSS data.



■ Figure 15.87 Observed TSS and Turbidity in Duck Creek – Duck Stream Mouth, and Grab Sample Sites – Duck 1, Duck 2 and Duck 3

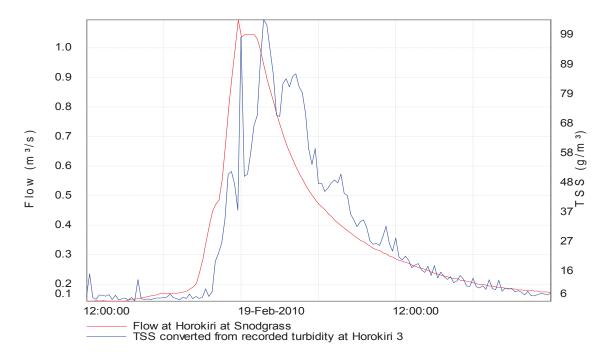
■ Figure 15.88 Observed TSS and turbidity in the Horokiri Stream – Horokiri Stream Mouth, Grab Sample Sites – Horokiri 1, Horokiri 2, Horokiri 3 and Horokiri 5 and the GWRC Site – Horokiri at Snodgrass

■ Figure 15.89 Observed TSS and Turbidity in the Pauatahanui Stream – Pauatahanui Stream Mouth, Grab Sampling Sites – Pauatahanui 1 and Pauatahanui 2 and NIWA's Site – Pauatahanui at Gorge

Table 15.84 TSS and Turbidity Relationships for Streams

Stream	Equation (TSS = g/m³, Turbidity = NTU)
Duck Creek	TSS = 1.1176(Turbidity)
Pauatahanui Stream	TSS = 0.9332(Turbidity)
Horokiri Stream	TSS = 1.2444(Turbidity)

Q.10.3 TSS and Flow Relationships


There was a general relationship between the flow record at each site and the estimated TSS data. The relationships were strong but not 100% predictive - that is, increases in estimated TSS did not always occur simultaneously with flow increases. There are numerous interactions that preclude this from happening. Increases in observed turbidity and TSS may be related to other factors such as stock moving through the stream, antecedent soil moisture conditions, rainfall intensity, frequency and duration and the presence of algae in the stream (Hicks, 1994; Hicks et al., 1996).

There tended to be a stronger relationship between sediment loads and flow during higher flow events in our data. An example of one such event on the Horokiri Stream is shown in **Figure 15.90**. This is a well documented trend. Walling and Webb (1988) noted that relatively larger events (not necessarily floods) tend to transport most of the sediment load in a stream. In fact, in three study rivers approximately 75% of the total load was transported between 1% and 4% of the time. Hicks (1994) also found that while instantaneous

sediment concentrations could vary greatly, most of this "noise" (present for reasons discussed above), would be averaged-out over the duration of a storm event. Furthermore, research on the development of sediment rating curves has shown that it is better to use event data to generate curves. Using the whole flow record to develop the curve would skew the data as base flows would be over represented, where only minor amounts of sediment are transported (Hicks, 1996).

Because of the fact that most sediment appears to be transported during larger events, a series of events were selected as input into the sediment rating curves. Events were selected when flow and sediment was significantly higher than the base flow. This typically occurred when the sediment concentration from a grab sample was greater than 10 g/m³.

■ Figure 15.90 Continuous TSS Data and Flow on the Horokiri Stream During a Rainfall Event on 18 and 19 February 2010

Q.10.4 Load Calculations from Observed Data

For each of the streams, the peak sediment load was calculated for a range of different flow events. For each flow event, sediment loads were calculated using daily suspended sediment and flow data. **Table 15.85** shows the sources of sediment and flow data used to calculate these loads.

Table 15.85 TSS and Flow Data Sources Used

TSS Data Source	Flow Data Source
GWRC TSS data	Daily peak flow data from corresponding gauge
SKM estimated TSS from turbidity loggers	Pauatahanui 2, Horokiri 3 and Horokiri 4 – estimated daily peak flow; Duck 2 – applied appropriate peaking factor to mean daily flow

TSS Data Source	Flow Data Source
SKM water quality characterisation grab samples	Peak flow data observed in field
SKM water quality characterisation event grab samples	Pauatahanui mouth, Horokiri mouth, Porirua mouth – estimated daily peak flow as detailed in Duck mouth and Ration mouth – applied appropriate peaking factor to mean daily flow

This data was used to calculate the sediment loads at peak flows for each catchment. These loads were used to develop the sediment rating curve.

Q.10.5 Threshold for Event Selection

Sediment runoff occurs during rain events that cause stream flows to increase. Low flows indicate no rainfall without sediment runoff whereas higher flows indicate rainfall producing sediment runoff. The exception is when works are undertaken in the bed of a stream and release sediment to the water column. The stream beds themselves are unlikely to be the source of increased sediment during construction. The operational effects on bed profiles are discussed in Technical Report 14: Assessment of Hydrology and Stormwater Effects.

During base flows, the sediment concentration in the streams is generally low. Concentrations are typically at or below the lowest detection limit for total suspended solids as observed by the laboratory, which is 1g/m³. Events were selected as input to the sediment rating curve when the flow exceeded the baseflow.

Q.10.6 Rating Curve Application

In order to create a curve that more accurately predicted sediment yield at higher flows and also produced accurate mean annual sediment when applied to the SMWBM the curve was adjusted by the scale coefficient 'A' in Equation 1. The A coefficient is determined by estimating an initial value and then using the 'goal seek' function within Microsoft Excel to converge on the correct solution. The solution is found by testing the USLE annual sediment yield value against a mean annual yield calculated by applying the curve equation to the SMWBM. The scale coefficient controls the yield magnitude of the sediment rating curve.

Due to observed data only being available in a selected number of catchments over a limited range of events, and for simplicity, all sediment rating curves were given the same exponent B consistent with that stated by Healy (1980). The exponent used for the rating curves is 1.9 this value was derived from the shape given by the observed data for peak flow and sediment. The curve exponent B controls the shape of the sediment rating curve where larger exponents would indicate lower catchment yields per unit area. A lower exponent indicates a more linear relationship between flow and sediment, hence higher yields per unit area.

Once the shape of the curves had been set by the exponent B and the magnitude set by 'A' they were adjusted through comparative changes in the USLE for the scenarios and used to calculate the predicted yields for the events during the Project construction. The result was sediment rating curves given in Equation 1.

Q.10.7 Curve Application to Streams without Observed Data

The majority of the streams in the Project alignment are without observed data. The SMWBM was used to generate a stream flow time series for each of the catchments and the USLE to generate an annual sediment load for each catchment. The rating curves for the Horokiri and Pauatahanui Streams have been verified against observed data. No observed data was available for the remaining catchments with streams crossing

the Project alignment. In order to develop sediment rating curves for other stream catchments, the same process has been applied for the curve development above. The scaling process to determine the appropriate coefficient A for the Whareroa and Wainui Catchments was based on the assumption that the peak flow from a two year 24hr storm event would yield the mean annual sediment for the catchment. As above the exponent value B was used for all catchments.

Once the curve had been applied to the overall stream catchments, individual sub-catchment curves were created by rescaling the overall sediment rating curve by dividing the coefficient A by the relative catchment proportion. The scaling factor used was the relative sediment yield from the sub-catchment compared with the overall catchment. This is an approximation that ensures that the yield attained by the summation of all sub catchment curves for a given catchment flow is equal to the sediment yield from the overall catchment.

Q.10.8 Sediment Rating Curves for Catchments with Observed Data The calculated sediment-rating curves for three catchments with observed data are shown in Figure 15.43 through Figure 15.45.

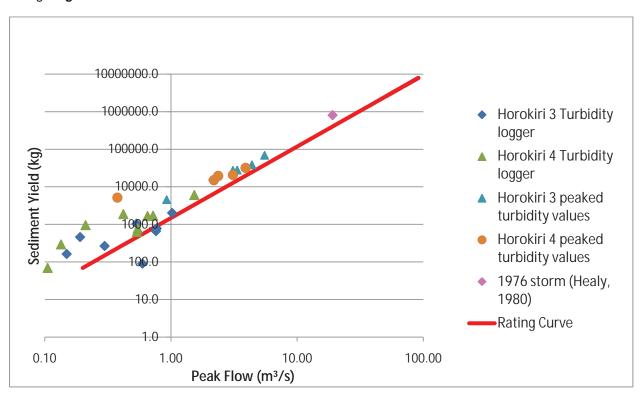
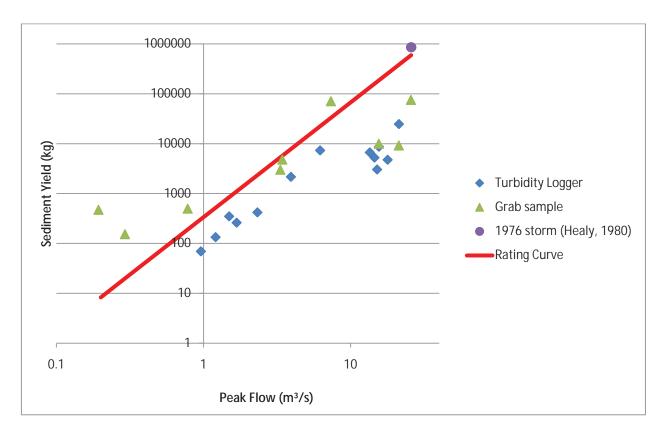
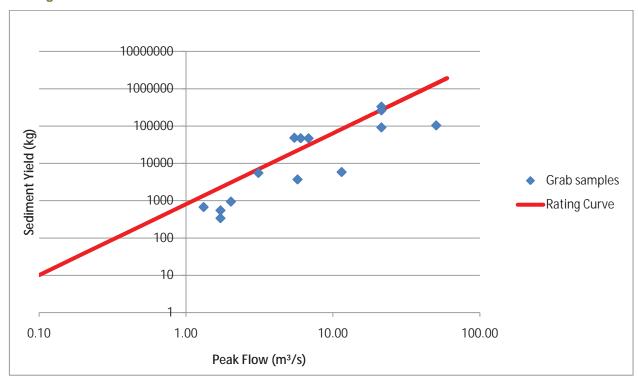




Figure 15.91 Sediment Yield and Peak Flow for Horokiri Catchment

■ Figure 15.92 Sediment Yield and Peak Flow for Pauatahanui Catchment

■ Figure 15.93 Sediment Yield and Peak Flow for Porirua Catchment

Q.10.9 Rating Curve Analysis

The sediment rating curves developed for the catchments of the Horokiri, Pauatahanui, and Porirua streams are expected to approximate sediment yield well for both mean annual sediment and sediment loads in higher return period events. This is shown by the fit with observed data in **Figure 15.43** through **Figure 15.45**. The use of a single curve for each catchment means that peak flow variations are compressed giving lower correlation with low flow events and over-estimation at high flows. However, it is better to use a single curve and to be conservative for sediment yield during larger events which transport most of the sediment.

The method developed to apply sediment rating curves to stream catchments with no observed sediment data was consistent with those with observed data, with a B exponent of 1.9 being used, and the A coefficient being set using the estimate of average annual sediment load form the USLE and the long term simulated flow record created suing the SMWBM.

Q.10.10 Findings on Use of Rating Curves

The method of developing sediment rating curves has been built from catchment characteristics and validated with observed data where possible. We are confident that the sediment yields generated provide a sound estimate of sediment generated from these catchments.

The method of developing sediment yields has the advantage that it enables the sediment discharged from the construction period of the Project to be considered in the context of the larger catchment, and enables cumulative effects to be considered.

It is important to provide a realistic estimation of the sediment generated in the existing situation, so that changes in sediment yields, as a result of the project, are not obscured by an overly conservative estimate of current yields.

The conservatism in the calculation of sediment yields comes in the scenarios that have been applied for testing the effect of the project on the receiving environments.

Appendix 15.R Existing Sediment Rating Curve Values (S=AQ^B)

Main Catchment	В	A
Duck	1.9	3746
Horokiri	1.9	1527
Kenepuru	1.9	1409
Pauatahanui	1.9	1182
Porirua	1.9	720
Ration	1.9	4564
Collins	1.9	10474
Wainui	1.9	13932
Whareroa	1.9	15389

Stream Sediment Transport Modelling - Suspended Sediment Appendix 15.S

Table S.1 – Total Suspended Sediment per Subcatchment

	pe (45
ydrology)	Q50 Sed (g/m³)	641	764		352	1939	1653	275		1432		1318	1200	724	1314	1561	1635	1261	2266	809	946		7344	1056
Modelled Worst Year (2021 hydrology)	Q10 Sed (g/m³)	426	455		216	1328	929	170		299		883	787	471	831	1059	1059	831	1495	538	627		3436	710
d Worst Y	Q2 Sed (g/m³)	242	268		118	799	414	93		352		533	465	268	490	929	616	484	880	318	363		2188	436
Modelle	1/3 of Q2 Sed (g/m³)	22	70		19	219	133	16		96		110	92	62	92	145	126	87	176	63	99		682	141
ad	Q50 Sed (g/m³)	641	574		324	1939	330	247		373		1318	1200	202	1171	1561	1635	1261	2266	808	946		2716	1056
without ro	Q10 Sed (g/m³)	426	390		207	1328	225	161		248		883	787	465	783	1059	1059	831	1495	538	627		1855	710
Modelled 2021 without road	Q2 Sed (g/m³)	242	230		113	799	138	88		146		533	465	264	462	636	616	484	880	318	363		1181	436
Moc	1/3 of Q2 Sed (g/m³)	22	09		19	219	44	15		40		110	92	78	87	145	126	87	176	63	99		368	141
	Q50 Sed (g/m³)	681	461		292	1920	347	237		378		1106	901	715	1150	1361	6142	1277	1513	829	964		1375	1070
Saseline	Q10 Sed (g/m³)	453	313		187	1315	236	154		251		741	591	471	692	923	3978	841	866	551	638		939	719
Modelled Baseline	Q2 Sed (g/m³)	257	185		102	792	145	84		148		447	350	268	453	555	2314	490	287	326	370		598	442
	1/3 of Q2 Sed (g/m³)	61	48		17	216	46	15		40		93	7.1	62	82	126	474	88	117	28	89		187	142
	Flow m³/s			1.6					0.4		4.0											0.1		
Measured	Baseline Median of 4 samples (q/m³)			7.5					6.2		12.4											8.3		
	Y Coordinate	5441076	5442279	5443017	5443075	5443147	5442707	5445103	5443626	5443443	5444471	5444350	5444661	5442931	5444674	5444706	5444898	5444905	5444747	5444682	5443880	5443374	5443458	5443458
	X Coordinate (1753294	1754338	1754244	1754302	1754432	1754518	1754683	1754674	1754778	1754908	1755090	1754750	1755153	1755584	1755635	1756084	1756121	1756490	1756504	1756673	1756916	1756959	1756964
	Catchment	Pori1HR	Pori3HR	Porirua 1	Pori2HR	Pori5HR	Pori4HR	Pori8HR	Porirua 2	Pori6HR	Kenepuru 3	Kene14HR	Kene15HR	Pori7HR	Kene13HR	Kene12HR	Kene11HR	Kene10HR	Kene9HR	Kene5HR	Kene4HR	Kenepuru 2	Kene2HR	Kene3HR

SINCLAIR KNIGHT MERZ

1756978 Automate Automate				Measured			Modelled Baseline	saseline		Mod	Modelled 2021 without road	without roa	p	Modelled	Worst Ye	Modelled Worst Year (2021 hydrology)	Irology)
RA 1756978 5444344 66 408 736 1147 64 RA 1757123 5445302 8 485 840 1287 101 RA 1757165 5445282 8 0.1 2 86 485 840 1287 101 RA 175736 5442104 3.8 0.1 2 320 3600 360 316 114	Catchment	X Coordinate	Y Coordinate	Baseline Median of 4 samples (g/m³)	Flow m³/s	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)
IR 1757123 5445300 90 485 840 1287 101 IV1 1757266 5445282 111 527 878 1304 114 IV1 1757236 5442249 0.0 320 1327 2300 3600 316 IV2 1758586 5442249 0.02 384 1565 3037 4656 384 IV2 1758594 54423712 3.0 0.02 361 1464 2980 4586 381 IR 1758902 5446888 104 618 1333 2044 104 IR 17590241 544608 5.2 0.4 372 1438 352 303 868 503 1234 1683 58 IR 17590241 544608 5.2 0.4 372 1438 2918 4436 372 IR 17596261 5444608 5.6 0.2 303 259 689 1071 <	Kene6HR	1756978	5444344			99	408	736	1147	64	396	714	1113	49	396	714	1113
IR 1757165 5445282 111 527 878 1304 114 IV 1757236 5442104 3.8 0.1 320 1327 2300 3600 316 IR 1758685 5442104 3.0 0.02 384 1505 3037 4655 384 IR 1758645 5442249 0.02 381 1464 2980 4585 381 R 1758002 5446283 104 104 618 1383 2044 104 R 1758040 5446888 290 1112 2291 381 4436 372 R 1759040 544688 5.2 0.4 373 1234 4893 58 R 1759040 544688 5.2 0.4 372 1438 2918 4436 372 R 1759040 544746 0.2 0.2 197 1438 2918 4436 56 R	Kene8HR	1757123	5445300			06	485	840	1287	101	543	146	1440	101	543	941	1440
ILV 1757236 5442104 3.8 0.1 320 1327 2300 3600 316 ILV 1758586 5442249 3.0 0.02 384 1505 3037 4655 384 ILV 175854 5442349 381 1464 2980 4585 381 IR 175894 5446283 104 618 1383 2044 104 IR 175807 544688 35 303 603 1238 35 IR 175807 544688 35 303 603 1238 35 IR 175807 544688 35 303 603 1238 35 IR 175807 52 0.4 373 1438 2836 4273 373 IR 175808 544568 5.6 0.2 303 688 4071 36 IR 1758040 5447728 5.0 0.4 5.0 465 <t< td=""><td>Kene7HR</td><td>1757165</td><td>5445282</td><td></td><td></td><td>111</td><td>527</td><td>878</td><td>1304</td><td>114</td><td>541</td><td>902</td><td>1339</td><td>114</td><td>541</td><td>902</td><td>1339</td></t<>	Kene7HR	1757165	5445282			111	527	878	1304	114	541	902	1339	114	541	902	1339
IR 1757313 544249 320 1327 2300 316 1758585 5443207 3.0 0.02 384 1505 3037 4655 384 IR 1758594 5443534 381 1464 2980 4585 381 R 1758045 5446283 104 618 1383 2044 104 R 175906 5446888 290 1112 2291 3512 290 R 175907 5446888 35 303 803 1234 104 R 175908 5446888 36 373 1383 2836 4273 373 R 175909 5446888 372 1438 2918 4436 372 R 175909 544688 56 0.2 372 1436 372 R 175940 544776 5 0.4 372 1436 372 R 1759610 5447728	Kenepuru 1	1757236	5442104	3.8	0.1												
1758585 5443207 3.0 0.02	Kene1HR	1757313	5442249			320	1327	2300	3600	316	1311	2271	3554	335	1389	2408	3981
R 1758594 5443534 384 1505 3037 4655 384 R 1758757 5443712 381 1464 2980 4585 381 R 1758945 5446283 104 618 1383 2044 104 R 1759002 544688 290 1112 2291 3512 290 R 1759002 5446888 35 303 803 1238 35 R 1759006 5446888 68 503 1234 1893 58 R 1759410 544688 6.0 48 503 1234 133 R 1759410 544776 0.2 1438 2918 4436 372 R 1759635 544778 5.6 0.2 197 1360 3300 5005 68 R 176064 544728 5.6 0.2 465 1071 36 26 R 176	Duck 1	1758585	5443207	3.0	0.02												
R 1758757 5443712 381 1464 2980 4585 381 R 1758845 5446283 104 618 1383 2044 104 R 1758902 5446888 35 303 803 1238 35 R 175902 5446888 35 0.4 1383 2836 4273 373 R 1759241 544688 68 503 1234 1893 58 R 1759241 544668 6.0 0.4 372 1438 2918 4273 373 R 175960 544718 0.2 1360 3300 5005 68 R 1759635 5447728 0.2 30 259 689 1071 36 R 1760044 5447042 3.4 1.3 5 66 205 308 5 R 176074 5448493 3.4 1.3 256 66 205	Duck2HR	1758594	5443534			384	1505	3037	4655	384	1505	3036	4655	538	2108	4251	8380
R 1758845 5446283 104 618 1383 2044 104 R 1758971 5446888 290 1112 2291 3512 290 R 1759022 5446888 35 303 803 1234 1893 58 R 1759026 5446888 68 50.4 372 1438 2836 4273 373 R 1759439 544568 5.6 0.2 1438 2918 4436 372 R 1759600 544769 5.6 0.2 1438 2918 4436 372 R 1759600 544776 5.6 0.2 1438 2918 4436 372 R 1759610 544778 5.6 0.2 1436 372 68 R 1759635 544778 5.6 0.2 167 1621 60 R 1760441 5447932 3.4 1.3 5 66 <t< td=""><td>Duck3HR</td><td>1758757</td><td>5443712</td><td></td><td></td><td>381</td><td>1464</td><td>2980</td><td>4585</td><td>381</td><td>1464</td><td>2980</td><td>4585</td><td>430</td><td>1651</td><td>3362</td><td>2760</td></t<>	Duck3HR	1758757	5443712			381	1464	2980	4585	381	1464	2980	4585	430	1651	3362	2760
R 1758971 5444007 290 1112 2291 3512 290 R 1759002 5446888 35 303 803 1234 1893 58 R 1759096 5446838 68 503 1234 1893 58 R 1759241 5445707 5.2 0.4 373 1393 2836 4273 373 R 1759439 5445748 0.2 372 1438 2918 4436 372 HR 1759610 544746 0.2 197 1360 3300 5005 68 R 1760064 5449043 60 465 1112 1621 60 R 1760841 5447129 3.4 1.3 5 66 205 308 5 R 1760844 544709 3.4 1.3 103 536 796 26 R 1760947 5446685 68 520 1370	Duck7HR	1758845	5446283			104	618	1383	2044	104	618	1383	2044	104	618	1383	2044
R 1759002 5446888 35 303 803 1234 1893 35 R 1759096 5446838 68 503 1234 1893 58 R 1759251 544608 5.2 0.4 373 1393 2836 4273 373 R 1759600 5447569 5.6 0.2 7 1438 2918 4436 372 HR 1759600 5447569 5.6 0.2 7 1360 3300 5005 68 RR 1760640 5447728 30 259 689 1071 36 R 1760741 5447932 3.4 1.3 5 66 205 308 5 R 176074 5448493 3.4 1.3 103 823 1801 2586 103 R 1760953 5447542 3.4 1.3 47 715 2340 3547 14 R	Duck4HR	1758971	5444007			290	1112	2291	3512	290	1112	2290	3511	290	1112	2290	3511
R 1759096 5446838 68 503 1234 1893 58 R 1759241 5445707 5.2 0.4 373 1393 2836 4273 373 R 1759439 5445148 372 1438 2918 4436 372 HR 1759600 5447569 5.6 0.2 4436 372 68 HR 1759610 5447476 0.2 197 1360 3300 5005 68 R 1760064 5447043 60 465 1112 1621 60 R 1760714 5447032 3.4 1.3 5 66 205 308 5 R 1760714 544709 3.4 1.3 103 535 796 26 R 1760959 5446685 68 520 1370 2045 68 R 1760959 5446685 68 520 1370 2045 68<	Duck8HR	1759002	5446888			35	303	803	1238	35	303	803	1238	35	303	803	1238
R 1759251 544507 5.2 0.4 7373 1393 2836 4273 373 R 1759251 5444608 5.6 0.2 1438 2918 4436 372 HR 1759600 5447476 0.2 197 1360 3300 5005 68 HR 1759610 5447476 0.2 197 1360 3300 5005 68 R 1760064 5447043 60 465 1112 1621 60 R 1760441 5447932 3.4 1.3 5 66 205 308 5 Inamiz 1760947 5448493 3.4 1.3 103 535 796 26 IR 1760953 544768 68 520 1370 2045 68 IR 1760959 5446685 68 520 1370 2045 68	Duck6HR	1759096	5446838			89	503	1234	1893	28	434	1065	1633	28	434	1065	1633
R 1759251 5444608 373 1393 2836 4273 373 R 1759439 5445148 5.6 0.2 1438 2918 4436 372 HR 1759610 5447476 0.2 197 1360 3300 5005 68 R 1760064 5449043 0.2 465 1112 1621 60 R 1760041 5447932 0.2 60 465 1112 1621 60 R 1760941 5447932 0.34 1.3 0.05 308 5 Inanui Z 1760944 5447932 0.4 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Duck 2	1759241	5445707	5.2	4.0												
IR 1759439 5445148 372 1438 2918 4436 372 HR 1759600 5447569 5.6 0.2 197 1360 3300 5005 68 HR 1759635 5447728 30 259 689 1071 36 R 1760064 5449043 60 465 1112 1621 60 IR 1760714 5448493 3.4 1.3 5 66 205 308 5 IR 1760947 5448493 103 823 1801 2586 103 IR 1760953 5447542 47 715 2340 3547 14 IR 1760959 5446685 68 520 1370 2045 68	Duck5HR	1759251	5444608			373	1393	2836	4273	373	1393	2836	4272	373	1393	2836	4272
HR 1759600 5447476 0.2 197 1360 3300 5005 68	Duck1HR	1759439	5445148			372	1438	2918	4436	372	1438	2917	4436	584	2260	4586	9510
1759610 5447476 197 1360 3300 5005 68 68 1759635 5447728 30 259 689 1071 36 68 1760064 5449043 60 465 1112 1621 60 176014 5447932 5 66 205 308 5 1760714 5448493 103 823 1801 2586 103 1760947 5447709 26 203 535 796 26 1760953 5447542 68 520 1370 2045 68 68 520 1370 2045 68	Duck 3	1759600	5447569	5.6	0.2												
1759635 5447728 30 259 689 1071 36 1760064 5449043 60 465 1112 1621 60 1760441 5447932 5 66 205 308 5 1760714 5448493 1.3 103 823 1801 2586 103 1760953 5447542 26 203 535 796 26 1760959 5446685 68 520 1370 2045 68	Duck10HR	1759610	5447476			197	1360	3300	5005	89	471	1142	1731	89	471	1142	1731
1760064 5449043 60 465 1112 1621 60 1760441 5447932 3.4 1.3 5 66 205 308 5 1760714 5448493 3.4 1.3 103 823 1801 2586 103 1760947 5447709 26 203 535 796 26 1760953 5446685 68 520 1370 2045 68 1760959 5446685 68 520 1370 2045 68	Duck9HR	1759635	5447728			30	259	689	1071	36	304	810	1259	36	304	810	1259
1760441 5447932 5 66 205 308 5 nui2 1760814 5447129 3.4 1.3 823 1801 2586 103 1760947 5447709 26 203 535 796 26 1760953 5446685 68 520 1370 2045 68 1760959 5446685 68 520 1370 2045 68	Horo7HR	1760064	5449043			09	465	1112	1621	09	465	1112	1621	61	474	1135	1688
1760714 5447129 3.4 1.3 823 1801 2586 103 1760714 5448493 26 203 535 796 26 1760953 5447542 47 715 2340 3547 14 1760959 5446685 68 520 1370 2045 68	Paua6HR	1760441	5447932			2	99	205	308	C)	99	205	308	2	99	205	308
1760714 5448493 103 823 1801 2586 103 1760947 5447709 26 203 535 796 26 1760953 5447542 47 715 2340 3547 14 1760959 5446685 68 520 1370 2045 68	Pauatahanui 2	1760814	5447129	3.4	1.3												
1760953 5447509 26 203 535 796 26 1760953 5447542 47 715 2340 3547 14 1760959 5446685 68 520 1370 2045 68	Rati6HR	1760714	5448493			103	823	1801	2586	103	823	1801	2586	188	1506	3293	6872
1760953 5447542 47 715 2340 3547 14 1760959 5446685 68 520 1370 2045 68 44604040 5446685 5446685 68 68 68	Paua5HR	1760947	5447709			26	203	535	962	26	203	535	962	31	246	649	1135
1760959 5446685 68 520 1370 2045 68	Pana4HR	1760953	5447542			47	715	2340	3547	41	211	689	1044	31	468	1531	3597
170,000 010 010 010 010 010 010 010 010 01	Paua3HR	1760959	5446685			89	520	1370	2045	89	520	1370	2044	98	629	1736	3135
1,01040 0,440024 0.10	Paua2HR	1761048	5446824			21	412	1079	1596	21	412	1078	1596	21	412	1078	1596

SINCLAIR KNIGHT MERZ

PAGE 318

			Measured			Modelled Baseline	Saseline		Wo	Modelled 2021 without road	without roa	p	Modelled	Worst Ye	Modelled Worst Year (2021 hydrology)	drology)
Catchment	X Coordinate	Y Coordinate	Baseline Median of 4 samples (g/m³)	Flow m³/s	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)
Ration 2	1761101	5448667	3.7	0.2												
Horokiri 5	1761192	5449870	3.0	0.8												
Pauatahanui 1	1761252	5446595	12.0	1.0												
Paua1HR	1762047	5446637			28	298	1584	2355	78	298	1584	2356	78	298	1585	2357
Rati2HR	1762322	5449235			84	720	1621	2346	84	720	1621	2346	140	1203	2707	5487
Ration 1	1762326	5449179	3.0	0.1												
Rati5HR	1762357	5449206			116	984	2222	3252	116	984	2222	3252	194	1653	3732	7672
Horokiri 2	1762888	5451776	3.0	0.1												
Horo6HR	1762891	5452045			12	86	241	361	12	86	241	361	12	86	241	361
Rati4HR	1762942	5449955			142	1205	2691	3950	142	1205	2691	3950	230	1959	4374	8893
Horo1HR	1762950	5452443			89	555	1352	2001	89	555	1352	2001	89	555	1352	2001
Horokiri 3	1762966	5452361	3.1	0.2												
Horo4HR	1763047	5452977			39	313	779	1170	39	313	622	1170	39	313	622	1172
Rati3HR	1763100	5450266			186	1619	3653	5376	186	1619	3653	5376	206	1793	4046	6531
Rati1HR	1763166	5450993			184	1540	3468	2108	184	1540	3468	5108	224	1869	4208	7290
Horo5HR	1763309	5452064			106	861	2116	3147	106	861	2116	3147	155	1255	3085	6028
Horo2HR	1763950	5454328			06	700	1702	2504	06	200	1702	2504	66	764	1859	2964
Horokiri 1	1764158	5455125	3.0	0.1												
Horo3HR	1764252	5455241			142	1075	2635	3858	142	1075	2635	3858	142	1075	2635	3858
Te Puka 1	1765016	5458606	3.0	0.2												
Te Puka 2	1765423	5461361	4.0	9.0												
Whareroa 1	1766929	5462394	3.3	0.2												
Wain10HR	1765573	5461548			52	459	1065	1556	65	267	1317	1924	29	589	1366	2067
Wain11HR	1764912	5462408			75	1132	2983	4368	2.2	1158	3051	4466	22	1161	3059	4489
Wain1HR	1765090	5458560			732	6184	13971	20785	732	6184	13971	20785	732	6184	13971	20785
Wain2HR	1765664	5461287			922	8432	31980	29428	922	8432	31980	29428	696	8807	33400	32042

SINCLAIR KNIGHT MERZ

PAGE 319

			Measured			Modelled Baseline	Saseline		Mo	Modelled 2021 without road	without roa	p	Modelled	Worst Ye	Modelled Worst Year (2021 hydrology)	drology)
Catchment	X Coordinate	Y Coordinate	Baseline Median of 4 samples (q/m³)	Flow m³/s	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)	1/3 of Q2 Sed (g/m³)	Q2 Sed (g/m³)	Q10 Sed (g/m³)	Q50 Sed (g/m³)
Wain3HR	1765087	5458592			870	7347	16597	24892	870	7347	16597	24892	870	7347	16597	24892
Wain4HR	1765387	5460579			851	7684	17809	26946	851	7684	17809	26946	1381	12468	28895	60492
Wain7HR	1765344	5461625			272	3111	7651	11247	272	3111	7651	11247	272	3111	7651	11247
Wain8HR	1765387	5461613			410	3498	7980	11901	410	3498	7980	11901	1107	9437	21527	52309
Wain9HR	1765560	5461416			512	4465	10178	15219	512	4465	10178	15219	965	8416	19183	42153
Whar1HR	1766903	5462245			2213	17024	39381	58313	834	6416	14842	21976	834	6416	14842	21976
Whar2HR	1767411	5461951			2039	15615	35662	52659	692	5885	13440	19845	692	5885	13440	19845
Whar3HR	1767434	5461970			2046	14802	33233	48044	771	2578	12525	18106	771	2228	12525	18106
Whar4HR	1766871	5462569			1286	9684	22091	32129	485	3650	8326	12109	783	2898	13455	27028
Whar5HR	1766572	5464185			16	109	239	334	13	87	191	267	4	92	208	315
Whar6HR	1766396	5464409			564	4558	10503	15279	241	1946	4484	6523	241	1946	4484	6523
Whar7HR	1765673	5464316			-	9	12	16	0	-	က	ო	0	2	က	2
																ī.

SINCLAIR KNIGHT WERZ

PAGE 320

■ Table S.2 – Percentage Change in TSS between No Road and Peak Construction

		Sedime	nt Yield (kg)	3.		uspended ent (g/m³)	Percentage
Catchment	Event	No Road	Peak Construction	Volume (m ³ /s)	No Road	Peak Construction	Change
Duck	1/3 of Q2	10793	13670	57046	189	240	27%
	Q2	342821	434196	329425	1041	1318	27%
	Q10	1581875	2003508	703380	2249	2848	27%
	Q50	3617255	5545538	1074540	3366	5161	53%
Horokiri	1/3 of Q2	10572	12055	126987	83	95	14%
	Q2	688690	785323	1062829	648	739	14%
	Q10	3754028	4280771	2465820	1522	1736	14%
	Q50	8288985	10615110	3698400	2241	2870	28%
Kenepuru	1/3 of Q2	18243	20079	110245	165	182	10%
	Q2	375466	413243	507219	740	815	10%
	Q10	1050597	1156302	860220	1221	1344	10%
	Q50	2345704	2817725	1294560	1812	2177	20%
Pauatahanui	1/3 of Q2	10675	10917	136868	78	80	2%
	Q2	695481	711242	1148265	606	619	2%
	Q10	4425800	4526101	2873520	1540	1575	2%
	Q50	10117500	10576084	4390140	2305	2409	5%
Porirua	1/3 of Q2	22817	23277	305474	75	76	2%
	Q2	480840	490536	1460295	329	336	2%
	Q10	1417250	1445827	2549760	556	567	2%
	Q50	3193641	3322436	3875580	824	857	4%
Ration	1/3 of Q2	4049	5779	29235	139	198	43%
	Q2	271448	387367	242240	1121	1599	43%
	Q10	1352966	1930742	541440	2499	3566	43%
	Q50	2941754	5454267	808380	3639	6747	85%
Wainui	1/3 of Q2	23588	30510	32368	729	943	29%
	Q2	1709800	2211592	268740	6362	8229	29%
	Q10	8687664	11237318	599330	14496	18750	29%
	Q50	19431041	30836279	905941	21448	34038	59%
Whareroa	1/3 of Q2	33405	34991	69249	482	505	5%
	Q2	1948361	2040840	540726	3603	3774	5%
	Q10	9594996	10050423	1179982	8131	8517	5%
	Q50	20496760	22442520	1739778	11781	12900	9%
Collins	1/3 of Q2	376	673	3050	123	221	79%
	Q2	21201	37908	22955	924	1651	79%
	Q10	107131	191555	50460	2123	3796	79%
	Q50	221820	571425	75419	2941	7577	158%