Waterview Operational Air Quality Monitoring Report January 2018

Document No: [Subject]
DOCUMENT CONTENTS

1 INTRODUCTION---------------------------------3
2 MONITORING RESULTS AND ANALYSIS---------5
3 CONCLUSION ---------------------------------9
APPENDIX A: AIR QUALITY CONDITIONS -------10
APPENDIX B: MONITORING LOCATIONS----------12
APPENDIX C: VALID DATA EXCEPTION REPORT ----14
APPENDIX D: PREVIOUS MONTHLY DATA---------16
APPENDIX E: POLLUTION ROSES FOR JANUARY 2018--18
APPENDIX F: ORIGINAL BASELINE MONITORING DATA--23
1 INTRODUCTION

1.1 OVERVIEW

The Waterview Tunnel opened on 02 July 2017. This report includes analysis of validated air quality monitoring data for Waterview Tunnel Joint Operations (WTJO) for the period January 2018. This air quality monitoring report has been prepared in accordance with Waterview Connection BOI Operational Air Quality Condition OA.4.

1.2 WATERVIEW OPERATIONAL AIR QUALITY REQUIREMENTS

Waterview Connection BOI Operational Air Quality Conditions OA.2 – OA.8 (refer Appendix A) set out the requirements for ambient air quality monitoring of traffic emissions to confirm that required National Environmental Standards for air quality and Auckland Regional air quality targets are met. Relevant ambient air quality criteria are shown in Table 1.

Table 1. WTJO ambient air quality criteria

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Threshold concentration</th>
<th>Averaging period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine particles (PM_{10})</td>
<td>50 µg/m³, 20 µg/m³</td>
<td>24-hour, Annual</td>
</tr>
<tr>
<td>Fine particles (PM_{2.5})</td>
<td>25 µg/m³, 10 µg/m³</td>
<td>24-hour, Annual</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>200 µg/m³, 200 µg/m³, 100 µg/m³, 40 µg/m³</td>
<td>1-hour, 24-hour, Annual</td>
</tr>
</tbody>
</table>

* the rolling 1-hour average NO\textsubscript{2} is also reported for the assessment criteria under Condition OA.8.

Two ambient air quality stations (one in the north and one in the south of the WTJO) and one portal analyser are required to be operated for a minimum period of 2 years. The two ambient stations require measurement of particulates (PM\textsubscript{2.5} & PM\textsubscript{10}), nitrogen dioxide (NO\textsubscript{2}), wind speed and wind direction. The portal analyser requires measurement of NO\textsubscript{2}.

This monitoring must continue until the Air Quality Peer Review Panel (required under condition OA.7) recommend that it is no longer necessary. Results are required to be reported monthly for the first 12 months and quarterly thereafter (OA.4).

1.3 MONITORED PARAMETERS AND LOCATIONS

Monitoring locations are shown in Appendix B. Locations and types of instrumentation have been agreed with Auckland Council and the Air Quality Peer Review Panel.

A portal monitoring station with Cavity Attenuated Phase Shift Spectroscopy (CAPS) NO\textsubscript{2} analyser has been installed at the rear of 93 Hendon Avenue near the Southern portal, to monitor NO\textsubscript{2} in accordance with the requirements of consent condition OA.2 and to demonstrate compliance with consent condition OA.8. The portal station is located approximately 80 m from the southern tunnel portal on the residential boundary (40 m from SH20). SH20 is screened from the nearest receptors within the southern approach trench.

Two ambient air quality monitoring stations have been installed to monitor particulates (BAM-1020 analysers, PM\textsubscript{10} and PM\textsubscript{2.5}), nitrogen dioxide (Chemiluminescence NO\textsubscript{x} analyser), wind speed and wind direction in accordance with conditions OA.2 and OA.3.
The southern ambient air quality station is located in the approximate location of the original pre-construction baseline monitoring for the WTJO, near to 5 Barrymore Road. The southern station is also located near to the residential boundary approximately 470 m from the southern tunnel portal (25 m from SH20) where SH20 achieves grade.

Under condition OA.2, the northern ambient air quality station should be located at Waterview School subject to agreement by the School; this agreement was not secured. The northern station is therefore located in the approximate location of the original pre-construction baseline monitoring for the WTJO, near to the operation maintenance building. This station is located approximately 100 m from the northern tunnel portal in the prevailing wind direction (25 m from SH20, 330 m SH16 and 20 m from Great North Road), with no obstruction between the adjacent traffic sources and air quality station. This location will experience higher levels than the proposed location at the School and is therefore considered conservative.

1.4 DATA MANAGEMENT

Data are downloaded and checked daily by suppliers Ecotech and monthly validated reports provided to the WTJO. A daily summary of results (unvalidated data) is provided to the WTJO and, in the event that WTJO air quality criteria are exceeded, email/text alerts are sent, so investigation can be initiated.

Ecotech calibrate the air quality stations on a monthly basis, and attend the site if a fault is detected during the daily checks. Calibration and equipment fault reports are forwarded to the WTJO.

The valid data exception report for January 2018 is attached as Appendix C.
2 MONITORING RESULTS AND ANALYSIS

2.1 SUMMARY STATISTICS

A comparison of the monitored levels of NO$_2$, PM$_{2.5}$ and PM$_{10}$ against the WTJO air quality criteria is shown in Table 2 for January 2018. This shows that measured air quality concentrations were below the WTJO ambient air quality criteria.

Monitoring sites used for compliance monitoring should achieve at least 75% valid data for averaging or 95% data capture. All stations achieved at least 75% valid data for averaging and at least 95% data capture during January 2018.

Previous monthly data is shown in Appendix D and original baseline data in Appendix F.

<table>
<thead>
<tr>
<th>AQ Station</th>
<th>Description</th>
<th>% valid data for averaging</th>
<th>% data capture</th>
<th>Concentration in µg/m3</th>
<th>WTJO air quality criteria in µg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern ambient air quality station</td>
<td>Maximum 1-hour average NO$_2$</td>
<td>96.7</td>
<td>100</td>
<td>53.6</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum rolling 1-hour average NO$_2$</td>
<td>94.9</td>
<td>100</td>
<td>63.7</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO$_2$</td>
<td>96.7</td>
<td>100</td>
<td>24.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM$_{2.5}$</td>
<td>99.6</td>
<td>100</td>
<td>16.1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM$_{10}$</td>
<td>99.7</td>
<td>100</td>
<td>36.4</td>
<td>50</td>
</tr>
<tr>
<td>Southern ambient air quality station</td>
<td>Maximum 1-hour average NO$_2$</td>
<td>97.4</td>
<td>99.9</td>
<td>32.8</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum rolling 1-hour average NO$_2$</td>
<td>95.6</td>
<td>99.9</td>
<td>34.3</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO$_2$</td>
<td>97.4</td>
<td>100</td>
<td>18.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM$_{2.5}$</td>
<td>99.7</td>
<td>100</td>
<td>13.8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM$_{10}$</td>
<td>100</td>
<td>100</td>
<td>33.9</td>
<td>50</td>
</tr>
<tr>
<td>Portal air quality station</td>
<td>Maximum 1-hour average NO$_2$</td>
<td>97.1</td>
<td>100</td>
<td>45.9</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum rolling 1-hour average NO$_2$</td>
<td>95.7</td>
<td>100</td>
<td>46.7</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO$_2$</td>
<td>97.1</td>
<td>100</td>
<td>20.4</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2 EXCEEDENCES OF AIR QUALITY CRITERIA

The Waterview Connection BOI Operational Air Quality Condition OA.5 requires that when an exceedance of the WTJO air quality criteria occur, an investigation shall be undertaken into the cause of the exceedance and that this be reported to the Air Quality Peer Review Panel and Auckland Council.

There were no exceedances of the WTJO air quality criteria in January 2018.

Measured concentrations at all air quality stations were well below the air quality criteria and less than 50% of the air quality criteria for measured NO$_2$.

2.3 POLLUTION ROSES

Pollution roses illustrate the relationship between wind direction and air pollutant concentrations. They are a useful tool to visualise the upwind direction of air pollution sources. The main sources are in the direction of the wind directions that show the highest concentrations.

Pollution roses based on the hourly monitoring data are provided in Appendix E for January 2018. Pollution roses reflect expected reduction of pollutant concentrations during summer months.

In summary, the pollution roses show that:

- The main sources of NO$_2$ influencing the northern station are located in the direction of the adjacent SH20 alignment to the south, and south-west, SH16 to the north and north-west and Great North Road in the south-easterly wind direction.
- The main sources of PM$_{10}$ influencing the northern station in January are located in the north to north-west and south-west wind directions.
- The main source of NO$_2$ influencing the portal and southern stations is located in the direction of the adjacent SH20 alignment to the south, south-west and west. The second largest source was to the east and east-northeast, in the direction of Hendon Ave. PM$_{2.5}$ and PM$_{10}$ at the southern station showed the similar dominant source to the south and south-west (SH20) and another main source to the north and north-north-east in the direction of Hendon Avenue.
- The NO$_2$ pollution roses indicate that the main source of NO$_2$ is traffic emissions. The PM$_{10}$ and PM$_{2.5}$ pollution roses for January similarly indicate that traffic emissions are the dominant source.

2.4 TRAFFIC DATA AND POLLUTANT TRENDS

The daily traffic flow through the Waterview tunnel during January 2018 is shown in Figure 1 below with daily nitrogen dioxide concentrations. The traffic flow shows a distinct weekly pattern, with traffic flows generally increasing from Monday to Friday and dropping off at the weekend, with the lowest traffic flow on Sundays. The northern air quality station shows the highest measured levels of NO$_2$. The northern station is located closer to major traffic sources than the other two stations and has no obstruction between the adjacent traffic sources and air quality station. The portal and southern stations show similar NO$_2$ trends.

The weekly pattern of PM$_{2.5}$ and PM$_{10}$ concentrations shows some similarity in peaks and troughs to the daily traffic flow, as shown in Figure 2, although the pattern is not as evident as with NO$_2$, indicating the influence of other background sources. The PM$_{10}$ and PM$_{2.5}$ concentrations show similar trends at the northern and southern stations.

The maximum hourly pollutant trends for nitrogen dioxide are shown in Figure 3. These show the pollutant level changes after tunnel opening in July 2017 and the monthly variation (seasonality) in pollutant concentrations. Measured pollutant levels in winter are generally higher than in summer months due to meteorological influences.
Figure 1: Waterview tunnel traffic flows and NO\textsubscript{2} January 2018

Figure 2: Waterview tunnel traffic flows and PM\textsubscript{2.5}/PM\textsubscript{10} January 2018
Figure 3: Waterview stations trends in hourly nitrogen dioxide concentrations
3 CONCLUSION

This air quality monitoring report has been prepared in accordance with Waterview Connection BOI Operational Air Quality Condition OA.4, and includes analysis of validated air quality monitoring data for January 2018.

The analysis of NO\textsubscript{2}, PM\textsubscript{2.5} and PM\textsubscript{10} data for the two ambient air quality stations and NO\textsubscript{2} data for the portal air quality station has shown that measured air quality concentrations were below the WTJO ambient air quality criteria during January 2018.

The recommended data capture of 75% valid data for averaging and recommended 95% data capture was achieved at all locations during January 2018.

NO\textsubscript{2} measurements in January were similar to November and December, and were lower than in the three (winter) months after opening. Highest measured concentrations of NO\textsubscript{2} were recorded at the northern station. This station is located closer to major traffic sources than the other two stations and has no obstruction between the adjacent sources and air quality station. The concentrations of PM\textsubscript{10} (and PM\textsubscript{2.5}) at the northern and southern stations were similar to each other.

Analysis of NO\textsubscript{2}, PM\textsubscript{10} and PM\textsubscript{2.5} pollution roses indicate that the main source of pollutant concentrations is traffic emissions.
APPENDIX A: AIR QUALITY CONDITIONS
OA.1 The vents used to discharge emissions in the tunnels shall discharge vertically into air at a height of 15m, as follows: (a) The northern ventilation stack will be at a height of 15m. This height shall be calculated from the lowest existing ground level along the Great North Road boundary, adjacent to the ventilation stack; and (b) The southern ventilation stack will be at a height of 15m calculated from the post-construction ground level of the Alan Wood Reserve averaged at a distance of 10m from the exterior walls the ventilation stack location and shall not be impeded by any obstruction that may in the opinion of the Peer Review Panel (Condition OA. 7) decrease the vertical efflux velocity (in other words, the average velocity of material emitted into the atmosphere).

OA.2 Prior to the tunnels becoming operational, the NZTA shall establish two ambient air quality monitoring stations and one portal air quality monitoring station. The location and types of these monitoring stations shall be selected by the NZTA in consultation with the Auckland Council and Peer Review Panel (Condition OA.7), providing that one ambient monitoring station will be located within the Waterview Primary School (subject to agreement by the School).

Ambient air quality shall be monitored continuously in real time, to monitor potential effects associated with the operation of the ventilation system from the tunnels. Ambient monitoring shall include fine particulates (PM$_{10}$ and PM$_{2.5}$) and nitrogen dioxide. Portal monitoring shall include nitrogen dioxide. Results shall be compared with the relevant National Environmental Standards for air quality and Auckland Regional air quality targets (as identified in Chapter 4 of the Auckland Regional Plan: Air, Land and Water, 2010). Monitoring shall be undertaken at each site until the Peer Review Panel recommends that monitoring is no longer necessary. The locations, operation and maintenance schedules of the continuous monitors shall, as far as practicable, comply with the requirements of AS/NZ 3580.1.1: 2007 Method for Sampling and Analysis of Ambient Air – Guide to Siting Air Monitoring Equipment, and with methods specified in the National Environment Standards.

OA.3 Continuous monitoring of wind speed and direction shall be undertaken at each ambient air quality monitoring location as required by Condition OA.2. The locations of wind speed and direction monitors shall, as far as practicable, comply with the requirements of AS 2923:1987 Ambient Air – Guide for the Measurement of Horizontal Wind for Air Quality Applications.

OA.4 For the first 12 months of tunnel operation, the results of the ambient air quality monitoring shall be reported via validated reports and issued for information via the Project website (monthly). Following this period, and for a period of at least 12 months, reporting shall take place quarterly as follows: Quarter 1 (December to February) by 31 March, Quarter 2 (March to May) by 30 June, Quarter 3 (June to August) by 30 September and Quarter 4 (September to December) by 31 December.

OA.5. If the monitoring required by Condition OA.2 shows that concentrations of contaminants in ambient air at the monitoring locations exceeds the relevant National Environmental Standards for air quality, or Regional Air Quality Targets (as identified in Chapter 4 of the Auckland Regional Plan: Air, Land and Water), the NZTA shall undertake an investigation into the cause of the exceedance and report this to the Peer Review Panel (Condition OA.7) and the Major Infrastructure Team Manager, Auckland Council.

OA.6. The air quality monitoring shall be undertaken in general accordance with the Operational Air Quality Management Procedure (Appendix O of Technical Report G.1 Assessment of Air Quality Effects) submitted with this application.

OA.7. A Peer Review Panel shall be appointed by NZTA with the agreement of Major Infrastructure Team Manager, Auckland Council for the purpose of reviewing the ambient air quality monitoring programme and results. The Peer Review Panel shall consist of two independent experts in air quality with experience in ambient air quality monitoring and emissions from motor vehicles. The Peer Review Panel shall review all ambient monitoring, relevant traffic data and tunnel emissions and provide a summary report including any interpretation and recommendations to NZTA, Auckland Council and the Community Liaison Group(s) within 6 months of the tunnels becoming operational and annually thereafter.

OA.8 The tunnel ventilation system shall be designed and operated to ensure that any air emitted from the tunnel portals does not cause the concentration of nitrogen dioxide (NO$_2$) in ambient air to exceed 200 micrograms per cubic metre, expressed as a rolling 1 hour average, at any point beyond the designation boundary that borders an air pollution sensitive land use.

Advice Note: The above standard reflects the National Environmental Standard for Nitrogen Dioxide (NO$_2$) concentration in ambient air.
APPENDIX B: MONITORING LOCATIONS
Figure B 1: Southern area stations

Figure B 2: Northern area station
APPENDIX C: VALID DATA EXCEPTION REPORT
North ambient air quality station

<table>
<thead>
<tr>
<th>Start Date</th>
<th>End Date</th>
<th>Reason</th>
<th>Change Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2018 1:00</td>
<td>31/01/2018 1:40</td>
<td>Automatic overnight span calibration check from approximately 1:00 - 1:40</td>
<td>NO, NO₂, NOₓ</td>
</tr>
<tr>
<td>16/01/2018 4:00</td>
<td>22/01/2018 20:00</td>
<td>Intermittent data outside calibrated range of instrument</td>
<td>PM₁₀, PM₂.₅</td>
</tr>
<tr>
<td>19/01/2018 9:30</td>
<td>19/01/2018 10:30</td>
<td>Scheduled maintenance</td>
<td>NO, NO₂, NOₓ</td>
</tr>
<tr>
<td>19/01/2018 10:00</td>
<td>19/01/2018 10:05</td>
<td>Scheduled maintenance</td>
<td>PM₁₀, PM₂.₅</td>
</tr>
</tbody>
</table>

South ambient air quality station

<table>
<thead>
<tr>
<th>Start Date</th>
<th>End Date</th>
<th>Reason</th>
<th>Change Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2018 1:00</td>
<td>31/01/2018 1:30</td>
<td>Automatic overnight span calibration check from approximately 1:00 - 1:30</td>
<td>NO, NO₂, NOₓ</td>
</tr>
<tr>
<td>15/01/2018 14:00</td>
<td>15/01/2018 14:25</td>
<td>Unscheduled maintenance - remote NOₓ calibration</td>
<td>NO, NO₂, NOₓ</td>
</tr>
<tr>
<td>18/01/2018 20:00</td>
<td>18/01/2018 20:00</td>
<td>Unrealistic data not tracking with PM₁₀</td>
<td>PM₂.₅</td>
</tr>
<tr>
<td>19/01/2018 9:25</td>
<td>19/01/2018 9:55</td>
<td>Scheduled maintenance</td>
<td>NO, NO₂, NOₓ</td>
</tr>
<tr>
<td>25/01/2018 13:00</td>
<td>25/01/2018 13:05</td>
<td>Data outside calibrated range of instrument</td>
<td>PM₂.₅</td>
</tr>
</tbody>
</table>

Portal air quality station

<table>
<thead>
<tr>
<th>Start Date</th>
<th>End Date</th>
<th>Reason</th>
<th>Data affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/01/2018 0:45</td>
<td>31/01/2018 0:50</td>
<td>Automatic background check, nightly for 5 minutes</td>
<td>NO₂</td>
</tr>
<tr>
<td>01/01/2018 2:00</td>
<td>31/01/2018 2:30</td>
<td>Automatic overnight span calibration check from approximately 2:00 - 2:30</td>
<td>NO₂</td>
</tr>
<tr>
<td>19/01/2018 12:45</td>
<td>19/01/2018 13:20</td>
<td>Scheduled maintenance</td>
<td>NO₂</td>
</tr>
</tbody>
</table>
APPENDIX D: PREVIOUS MONTHLY DATA
<table>
<thead>
<tr>
<th>AQ Station</th>
<th>Description</th>
<th>Pre Tunnel Opening Concentration in µg/m³</th>
<th>Post Tunnel Opening Concentration in µg/m³</th>
<th>Project air quality criteria in µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern ambient air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>65.5</td>
<td>72.2</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>30.2</td>
<td>36.9</td>
<td>46.4</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂.₅</td>
<td>32.7</td>
<td>24.9</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td>35.7</td>
<td>33.3</td>
<td>31.0</td>
</tr>
<tr>
<td>Southern ambient air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>64.2</td>
<td>79.3</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>30.0</td>
<td>30.8</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂.₅</td>
<td>23.2</td>
<td>19.1</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td>35.8</td>
<td>31.8</td>
<td>31.8</td>
</tr>
<tr>
<td>Portal air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>70.8</td>
<td>80.6</td>
<td>86.9</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>32.1</td>
<td>33.1</td>
<td>46.0</td>
</tr>
</tbody>
</table>

It should be noted that construction activities on site in the vicinity of the stations, including vehicle movements on haul roads, will be contributing to measured particulate levels pre tunnel opening. Baseline measurements of PM₂.₅ were also elevated in May during the night time due to domestic smoke from adjacent residential properties.
APPENDIX E: POLLUTION ROSES FOR JANUARY 2018
Figure D 1: Northern station 1-hour average NO$_2$

Figure D 2: Northern station 1-hour average PM$_{2.5}$
Figure D 3: Northern station 1-hour average PM\textsubscript{10}

Figure D 4: Portal station 1-hour average NO\textsubscript{2}
Figure D 5: Southern station 1-hour average NO₂

Figure D 6: Southern station 1-hour average PM₂.5
Figure D 7: Southern station 1-hour average PM$_{10}$
APPENDIX F: ORIGINAL BASELINE MONITORING DATA
<table>
<thead>
<tr>
<th>Air Quality Station</th>
<th>Description</th>
<th>Jun-06</th>
<th>Jul-06</th>
<th>Aug-06</th>
<th>Sep-06</th>
<th>Oct-06</th>
<th>Nov-06</th>
<th>Dec-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Area - Cowley St air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Area - Alan Wood air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>55</td>
<td>59</td>
<td>59</td>
<td>53</td>
<td>112</td>
<td>39</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>25</td>
<td>34</td>
<td>31</td>
<td>26</td>
<td>86</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td>32</td>
<td>44</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>63</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Quality Station</th>
<th>Description</th>
<th>Jan-07</th>
<th>Feb-07</th>
<th>Mar-07</th>
<th>Apr-07</th>
<th>May-07</th>
<th>Jun-07</th>
<th>Jul-07</th>
<th>Aug-07</th>
<th>Sep-07</th>
<th>Oct-07</th>
<th>Nov-07</th>
<th>Dec-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Area - Cowley St air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>55</td>
<td>66</td>
<td>61</td>
<td>50</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>29</td>
<td>36</td>
<td>28</td>
<td>30</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td></td>
</tr>
<tr>
<td>Southern Area - Alan Wood air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>28</td>
<td>35</td>
<td>37</td>
<td>53</td>
<td>56</td>
<td>61</td>
<td>51</td>
<td>61</td>
<td>44</td>
<td>42</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>27</td>
<td>34</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>25</td>
<td>18</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Quality Station</th>
<th>Description</th>
<th>Jan-08</th>
<th>Feb-08</th>
<th>Mar-08</th>
<th>Apr-08</th>
<th>May-08</th>
<th>Jun-08</th>
<th>Jul-08</th>
<th>Aug-08</th>
<th>Sep-08</th>
<th>Oct-08</th>
<th>Nov-08</th>
<th>Dec-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Area - Cowley St air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>38</td>
<td>43</td>
<td>46</td>
<td>57</td>
<td>71</td>
<td>71</td>
<td>81</td>
<td>71</td>
<td>62</td>
<td>66</td>
<td>119</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>20</td>
<td>23</td>
<td>27</td>
<td>27</td>
<td>39</td>
<td>42</td>
<td>41</td>
<td>38</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td></td>
</tr>
<tr>
<td>Southern Area - Alan Wood air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>26</td>
<td>38</td>
<td>42</td>
<td>54</td>
<td>59</td>
<td>67</td>
<td>58</td>
<td>52</td>
<td>45</td>
<td>43</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>20</td>
<td>19</td>
<td>25</td>
<td>30</td>
<td>38</td>
<td>32</td>
<td>21</td>
<td>21</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂·₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td></td>
</tr>
<tr>
<td>Air Quality Station</td>
<td>Description</td>
<td>Jan-09</td>
<td>Feb-09</td>
<td>Mar-09</td>
<td>Apr-09</td>
<td>May-09</td>
<td>Jun-09</td>
<td>Jul-09</td>
<td>Aug-09</td>
<td>Sep-09</td>
<td>Oct-09</td>
<td>Nov-09</td>
<td>Dec-09</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>Northern Area - Cowley St air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>74</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>103</td>
<td>99</td>
<td>77</td>
<td>93</td>
<td>83</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>37</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>56</td>
<td>48</td>
<td>44</td>
<td>45</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂.₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td>20</td>
<td>29</td>
<td>26</td>
<td>29</td>
<td>27</td>
<td>50</td>
<td>43</td>
<td>32</td>
<td>135</td>
<td>31</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Southern Area - Alan Wood air quality station</td>
<td>Maximum rolling 1-hour average NO₂</td>
<td>29</td>
<td>32</td>
<td>38</td>
<td>40</td>
<td>51</td>
<td>62</td>
<td>44</td>
<td>51</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum 24-hour average NO₂</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>30</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₂.₅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum daily average PM₁₀</td>
<td>17</td>
<td>26</td>
<td>20</td>
<td>21</td>
<td>25</td>
<td>38</td>
<td>30</td>
<td>28</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results taken from: Ambient Air Quality Monitoring Summary Report, Beca 09 May 2011.