Maioro St to New North Road - Draft Urban Design Concepts
Figure D-10.10: Maioro Interchange proposed plan

NOTES:

1. The plan provides an outline of the landscape planting works around the Maioro interchange, and it is not intended to provide a full planting plan and schedule, and is subject to further detail work.
2. The attached notes provide a summary of the planting intent, along with indicative plant species and combinations.
3. This plan is to be read in conjunction with the engineering details for the project, along with the architectural details for the bridge structure.
4. All notes referring to the planting techniques to be used in carrying out this work are on the attached notes sheet.
Figure D-10.13: Maioro Interchange – perspective sketch, view looking north
Figure D-10.16: Maioro Interchange – concept and indicative details showing proposed retrofit of existing noise walls.

Figure C-11: SH20 retaining wall concept.
The Richardson Road bridge is the second of a pair with the Maioro bridge, having a similar central pier design and parapet treatment. The themes of shifting plates, movement and instability have been acknowledged through the barrier & bridge structure design. There will be subtle shifts from the Maioro bridge, indicating that this is not a static experience and that the process of transformation is still in motion.

Also important in designing this bridge at the edge of and entry to the future Stoddard growth node is creating a pleasant environment for pedestrians, and allowing for public transport. The design 'greens' the bridge to create an inviting approach to the centre, to add interest to the walk from the residential neighbourhood to the south, and to make an attractive setting for future development on adjacent private land.

Tree planting and a parking lane separate the footpath from moving lanes, and visually reduce the width of the bridge.

The structure is super tees over three spans. This, like the bridge at Maioro, has less impact on the motorway surface level. The super tee option can also be used as a planter for trees to Richardson Road level, in line with the "greening" of the bridge. This is consistent with the design approach of turning the bridge into a street, inviting pedestrians into the proposed Stoddard road centre. Other design items integrated into the bridge are generous footpaths, cycle ways, bus stops, lighting and street furniture.
Richardson Road Bridge Concept Design

Figure D-9.28: Richardson Road bridge - view looking north with cycleway running underneath
Key Sections

Figure D-9.13: Alan Wood Reserve Section A–A
Key Sections

Figure D-9.15: Alan Wood Reserve Section B-B

Figure D-9.16: Alan Wood Reserve Section C-C
The Hendon pedestrian bridge main span comprises a pair of ‘bent’ arches, giving a distinctive, lightweight structure.

The bridge is oblique to the motorway to follow a strong desire line that connects across the open space, continuing the cycleway from Alan Wood Reserve.

The bridge’s scale, towards the middle of the bridge, is consistent with the motorway and rail track it is crossing. Each end of the bridge has a lower profile helping reduce its scale as it re-engages with the park environment. The height in the middle of its span will also allow extensive views to the surrounding area for pedestrians and cyclists.

Raised mounds at each end act as spaces for seating and play areas, while also enabling a flatter gradient on the bridge approaches.

Figure D-9.22: Hendon Pedestrian Bridge – elevation

Figure D-9.23: Hendon Pedestrian Bridge – plan

Figure D-9.24: Hendon Pedestrian Bridge – view 1, looking east from footpath

Figure D-9.25: Hendon Pedestrian Bridge – view 2, looking west along bridge

Figure D-9.22: Hendon Pedestrian Bridge – elevation
D9.2.6 Olympus Pedestrian Bridge

The bridge alignment is important as it acknowledges and provides an important connection beyond Alan Wood Reserve from the surrounding area for pedestrians and cyclists. It identifies this part of Alan Wood Reserve, creating a distinctive ‘marker’ that orients landscape. It provides elevated and extensive views to Owairaka and the opportunity to access the higher slopes of New Zealand. The Olympus bridge visually and physically links both pedestrians and motorists.

The bridge crosses perpendicular to the highway, accommodating the future rail line and ensuring connections across it. Where now there is no arrangement of Alan Wood Reserve and the poor land uses and for park users, this will continue to provide an important connecting scale at park and road level: the single span over landscape. Consideration has also been given to its 'settles' into the treed landscape at the southern end, also reducing its apparent scale for adjacent landscape. When viewed along the motorway corridor, as there is no need for an intermediate support. The bridge's scale is consistent with the scale of the motorway and rail as well as the undulating topography.

Figure E-1: Olympus Pedestrian Bridge – artist’s impressions

Figure D-9.21: Olympus Pedestrian Bridge – plan

Figure D-9.20: Olympus Pedestrian Bridge – elevation
The experience of entering the tunnel is intended to reference the experience of entering the volcano. The retaining wall treatment reflects the ‘volcanic highway’ treatment of walls and barriers elsewhere along the Waterview Connection. The stack is treated as a sculptural element, located at and integrated with the tunnel portal.
C4.4 Noise walls design philosophy

- Recognise that noise walls are seen from adjacent structures, landscaping, and roadscape elements.
- Noise wall panels on SH16 are pre-cast concrete.
- Where walls step or change direction, allow them to butt up against each other butting them up against each other to slide past each other to terminate rather than overlapping, contrasting materials and textures that present a comparatively heavy appearance.
- Noise wall materials on SH20 should be a mix of strata.
- Design walls with a horizontal emphasis, offsetting joints to create a somewhat informal, random appearance.
- Walls that are double sided are to have 'thickness' (this will vary with the different combinations of materials) so that they appear as sculptural elements in the landscape.
- Employ the following materials:
 - Recycled timber and steel with a predominance of dark 'scorched' colours.
 - Applied artwork is not suitable for the design of noise walls in this project.

The noise wall principles for this project are:

- The noise wall design should integrate with the design of the overall corridor and complement the motorway.
- Noise walls should be considered. Consider limiting the height of noise walls to balance noise and visual impacts.
- Where appropriate, planting should be applied at the base both to soften the appearance and to bring strong highlight planting colour against the darker background. The visual impact of planting at the base should be considered. Consider limiting planting.
- The design inspiration for the form of noise and structures, landscaping and roadscape elements.
- The amenity of residents and open space users should be considered. Consider limiting plantings.
The Harbutt bridge provides a critical cycle and pedestrian link in the continuous North-western Cycleway. The proposed structure:

- bridges the existing rail lines running parallel to New North Road
- provides a link for pedestrians between Harbutt Reserve and Hendon Park, as a continuation of the SH20 cycleway that joins the SH16 cycleway at Waterview
- is designed as a visually dynamic structure that plays on the gentle curve of its alignment and repetitive nature of the truss structure.
- links to a 3m wide shared surface cycle/walkway through Harbutt Reserve.

Figure D-8.14: Harbutt Pedestrian Bridge – view north from New North Road
Figure D-8.15: Harbutt Reserve proposed plan
Figure D-8.16: Harbutt Pedestrian Bridge – elevation
Figure D-8.17: Harbutt Pedestrian Bridge – view south from New North Road
Figure D-8.18: Harbutt Pedestrian Bridge – plan

D8 to be updated when revised alignment confirmed to include view arrows matching perspective drawings.

Sections D-Sector Design Proposals
D-67 Western Ring Route – Waterview Connection Draft Urban and Landscape Design Framework NZTA February 2010

Figure D-8.14: Harbutt Pedestrian Bridge – view north from New North Road
Figure D-8.15: Harbutt Reserve proposed plan
Figure D-8.16: Harbutt Pedestrian Bridge – elevation
Figure D-8.17: Harbutt Pedestrian Bridge – view south from New North Road
Figure D-8.18: Harbutt Pedestrian Bridge – plan

D8 plan to come when alignment confirmed all other drawings to be updated.