Index

References in this index are to page numbers in the text. The page numbers in italics are references to figures, those in bold are to definitive information. The Preface, Acknowledgments, Abbreviations & Acronyms (pp. vii-xv) and Glossary (pp. 485-509) have not been indexed. The index is arranged alphabetically. Prepositions and the like at the beginning of subheadings have been ignored in determining subheading order. The ampersand ‘&’ has been used in place of the word ‘and’.

A

Abrasion test (Los Angeles) 13
Absorptive surfaces, effect on algorithm 342, 344, 373
Accidents 31, 419; see also Crashes
Acts, see HSE, HSNO, LGA, RMA
Additives 272-278; selection for design 360-361; see also Adhesion agent, AGO, Antifoaming agent, Cutter, Diesel, Flux, Heavy fuel oil, Polymer, Precoating, Rubber
Adhesion agent 12, 52, 273-275, 301-302, 356, 361, 428, 472, 475; in precoating 11, 349; how they work 273-274, 275; & chip cleanness 275, 364, 472; in PMBs 301, 302; in chipseal design 361, 371, 429, 430; timeline 5; in primers 52; in first coat seals 356
Advantages of chipseals 4, of primes 168; of emulsions 285, 290, 302, 360, 469
AGO 27, 272, 278, 283, 302, 355, 359; in chipseal design 359, 360, 428; loss over time 95-96; worked example 371, 428, 429, 431; see also Additives, Diesel, Flux
ALD, see Average Least Dimension, ALD:AGD (shape), ALD/16 rule
ALD:AGD (shape) 6, 319, 343, 374
ALD/16 rule 353, 372, 373-374
Algorithm, see Design algorithm, Treatment selection algorithm
Alligator cracking 79, 80; RAMM definition 80; see also Cracking
Anionic emulsion, see Bitumen emulsion
Antifoaming agent 278; see also Additives
Application rate 15-18, 93, 102, 116, 168, 238; control of 390-391, 396-398, 402, 405-406, 435; see also Binder, Bitumen emulsion, Chip and PMB application rates, Calibration
Aquaplaning 241; see also Skid resistance, Water film
Area-wide Pavement Treatment (AWPT) 142, 154, 155, 163, 241, 244, 245, 251, 470, 476-479
Asphalt, see Asphaltic concrete
Asphaltic concrete (asphalt, HMA) 112, 113, 261, 265, 276-277, 299, 354, 471-472; absorptive surfaces 252-253, 342; bridge decks 191-192; defects in 82, 244, 249, 237; design & testing 177, 265; equipment 407, 408; frost 196, 198, 201-202; noise 210-211, 211; OGEM 72, 252, 253, 342, 463; OGPA 72, 176, 187, 202, 248, 252, 253, 299, 342, 477; preseal prep 225, 226, 236, 237, 238, 244, 249, 249, 252, 253, 253; repairs 477; in rigid pavements 44, 165; roadmarking 187-188; SAMI 299; seal selection 141, 146, 151, 163, 164-165, 172, 176, 187, 216, 248, 356, 477; soft substrate 112, 113, 341, 354, 463; in surfacings 49, 66-68, 72-73, 72, 82, 141, 165, 168, 291, 294, 295, 296; see also Membrane seal, Open-graded mixes, SAMI
Asset management, of roads 137-143, 138; of pavements 142-150; condition data 140, 144-145; costs of 150-151, 151, 153; current work programme 143; design life & calculation 152, 153; development 19-20; dTIMS 19, 145; end of life cycle 155; exception report 144, 145; forward works programme 138, 142-143, 146-147; identification systems 145-146; implementation 138, 143; inputs 138, 139-140; inventory of assets, condition 144-145; life cycle management 139, 150-153; maintenance 145; NOMAD 147; optimisation 141, 142; options 141;
outputs 138, 142-143; predicting performance 140; prioritisation 138, 141-142; process 138, 138-143; RAMM, function of 144-145; risk assessment 138, 141-142, 145-146, 147, 149; theory of 6; timing of resels 156; treatment identification 145-146, 146; treatment lengths for management 139; treatment selection 144; unscheduled resels 156; worked example (pavement life) 152, 153; see also Life cycle of chipseal, RAMM

Asset manager & Seal designer roles 137, 142

Average Greatest Dimension (AGD) 96, 301, 319, 319, 426, 440, 453; see also Average Least Dimension, ALD:AGD (shape)

Average Least Dimension (ALD) 5, 6, 103-105, 104, 316-318, 317, 318, 331-333, 335, 338, 339, 344, 345, 348, 432; adjustment for ALD 342, 346-347, 447; binder application rate 347-349; chip application rate 365-369, 368, 432, 440; & chip selection 13, 367; chip shape (ALD:AGD) 6, 319, 343, 374; chip size 13, 316-319; definition 316; design aspects 331-333, 335; measurement 316-318; & multicoat seals 105, 152, 347-348, 367-369, 368; & single coat seals 103-104, 104, 152, 366-367; & traffic 103, 152, 333, 346-347; worked example 370-374; see also ALD:AGD (shape), ALD/16 Rule

AWPT, see Area-wide Pavement Treatment

B

Bandaging 174, 238-240, 239, 297; see also Crack sealing

Base, see Basecourse

Basecourse 42, 43, 44, 46, 47, 195, 221-222, 223, 224, 225, 226, 227-228, 228, 236-238; aggregate for 12; defects in 229; definition 44; & design 335, 356; failure 82, 111, 229-231; preparation 193, 451, 479; & stabilisation 231-232, 286; surface finish 227-228

Basecourse density 227

BCA 9904 compliance 25, 26, 27, 28, 30-32, 34, 214, 262, 277, 387, 399, 400, 401, 427, 440, 450, 456

BCA E/2 compliance 380, 382, 384, 390, 394, 395, 397, 399, 401, 441, 443, 449, 453

Benefit/cost ratio 120, 154

Benkelman Beam 243

Berm, see Shoulder

Binder 46, 47, 48, 261-271; additives, use in 272-278; bulk supply, transport 10; texture loss 462-466; for cold conditions 203; definition for bitumen emulsion 280; hardening 94-102, 111, 119; history 3, 4-5, 7-12, 8, 9; materials 425; nomenclature 261-262; research 10, 103; sources 7-9; see also Bleeding, Fluxing, Hazards, Life Cycle, Texture

Binder application rate 301, 443, 445; calculations for bitumen binder 428-431, for bitumen emulsion spray rate 447-448, for PMB spray rate 452-453; for cape seal 348; for cracking 174, 238-240; effect of HCVs 338-339, of temperature 337, of texture 332-333, 339, of variables 345-347; for first coat seal 355; for geotextile seal 349; Hanson’s equation 332; multiple coat seals 347-348; PMB seals 174, 298-299, 304; primes 168; precoating 349-350; for racked-in seals 368; for remedies 238, 240, 245-246, 472, 474; residual binder 347-350; for sandwich seal 348-349; for second coat seal 356-359; traffic factor 333; for two coat seal 347-348; variables 341-344; for wet lock seal 476; worked example 370-374

Binder (residual) in chipseal design 347-354, 355-359; first coat seal 355-356; geotextile seal 349; second coat seal 356-359; worked example 370-374

Binder hazards 26-32; bleeding 28, 400-401; pollution 214; PPE, clothing for 28, 29; presence of water 28; transferring 28, 401

Binder heating for construction 440; heating factors for bitumen 434, for emulsion 448; temperatures for bitumen 432-434, for emulsion 448-449

Binder materials, see Binder

Binder pressure gauge 395; BCA E/2 compliance 395

Binder residual, see Binder (residual) in chipseal design

Binder rise 85, 98, 117, 117, 118, 229, 301, 341, 353, 453, 461, 462, 463-464, 463, 465; see also Vapour venting

Binder run-off 62, 74, 441, 447-448, 450

Binder spraying, calculation for spray rate for bitumen binder 432, for emulsion 447-448, for PMBs 452-453; control of application rate 396-397; output rate 396-397; heating factors for bitumen binder 434, for emulsion 448; spray temperatures for bitumen binder 432, 433, 434, for emulsion 448-449, for PMBs 453; worked examples 429-431

Binder:stone ratio 59, 173, 177-179, 180, 470, 471

Bitumen, see Binder

Bitumen Burns Card 19, 30, 31-32; see also Burns, bitumen

Bitumen for emulsion, see Bitumen emulsion

Bitumen for PMBs, see PMBs

Bitumen distributor 379, 380; calibration of 389-390; circulation systems 390-393, 392, 393; early types 1-2, 9, 14-15, 14, 15, 17, 17; hazards 440; heating binder 440; instrumentation 394-396; output 396-397, 397; pressure gauge 395; pumping systems 390-393, 391; pumps 397, 397; speed control of 395; spray control 384-386, 398; strainer (screen) maintenance 396; temperature measurement 395-396
Bitumen emulsion 11, 279-290, 446-451; advantages of 290, 360; anionic 280-283, 280; breaking 282-283, 450-451; cationic 280-283, 281, 282; continuous phase 279-280; curing 283, 360, 450-451; design 360-363; dispersed phase 11, 279-280; emulsifiers 279-280; formulation 283-284; grades 285-286, 446-447; handling 286-287, 449-450; heating factors 448; manufacture 280-281; material selection 446-447; plant 449-450; sampling 287-288; settlement 287, 446; spray rate calculations 447-448; storage 286-287; testing 288-289; upcreaming 287, 446; see also PME, Slurry seal

Bitumen emulsion application 302, 447-448; application temperature 447-449

Bitumen emulsion construction 446-451; heating factors for emulsion 448; spray rate calculations 447-448; spray temperatures 448-449

Bitumen plant, see Equipment for chipsealing

Bitumen properties 261-271; ageing 270-271; ductility 266; durability 266; flash point 26, 264; hardening 270-271; ignition point 26; modulus 266-270; nomenclature 261-262; penetration grade, testing 270-271; solubility 264; stiffness 267; viscosity 10-12, 263-264 262; RTFO test 265; softening point 271; solubility factors for emulsion 448; spray rate calculations 264; stiffness 266-270; settlement 287, 446; testing 288-289; upcreaming 287, 446; see also Rutting

Blending hazards 28, 400-401

Block cracking 79, 82; RAMM definition 82; see also Cracking

Breaking of emulsion 282-283, 450-451

Bridges, seal selection 188-194; abutments 189, 190, 193; decks 188-192, 194

British Pendulum Tester (BPT) 120, 182, 315; PSV test 200, 313, 315

Brooms (Brooming) 228, 229, 330, 254, 355, 409-412, 411; see also Drag, Rotary, Suction, and Vacuum brooms; Sweeping

 Burning (pavement) 249-250

Burns, bitumen 19, 30, 31-32; see also Hazards

C

Calcined bauxite 48, 73, 182, 191, 306

Calibration for binder application 396-397; bitumen distributor 389, 390; chip spreading plant 405; early methods 18; spraybar 384; start-finish 388, 389

Cape seal 69-71, 69, 71, 164, 172, 176, 217; design 71, 348, 367

Carriageway 41; terminology 42-43

Cationic emulsion, see Bitumen emulsion

Cement for slurry seal 66-67, 321-322; for stabilisation 231-232; for recycling 179

Chip 46, 48-49, 305-319; aggregate types 307; broken faces 319; crushing 308-310; extraction 305, 308; processing 307-310; PSV 129-130, 131; PSV equation 130; screening 308-310; shape 6, 130-131, 319, 343, 374; skid resistance 129-130

Chip application rate 17-18, 365-369, 432, 435-438, 436, 437; 2004 design algorithm 365-366; cape seal 367; geotextile seal 369; Hanson’s research 5-6, 6, 13, 332; racked-in seal 368; sandwich seal 369; single coat seal 336-337; two coat seal 369; & voids 366; voidfilling seal 367; worked example for single coat 370-374; worked example for chip volume 435

Chip loss 82-83, 111, 466-468, 467, 468; causes 362-365, 463, 466; prevention 480-481; repairs 245-246; types 467; see also Raveling, Scabbing


Chip properties & tests 311-321; AGD 319; ALD 316-319; angularity 319; BPT test 315; broken faces 13, 319; cleanliness 6, 13, 312, 313, 315-316, 316, 364, 472; crushing resistance 312; grade 13, 316, 317, 318; & skid resistance 129-130; particle size distribution 67, 307, 318, 320; PSV 13, 48, 129-130, 131, 182, 313, 314-315, 314; PSV equation 130; shape 6, 130-131, 319, 343, 374; size (ALD) 130-131, 316-319; size uniformity 318-319; for slurries 320-321; weathering resistance 312-313

Chip selection 312-315, 314, 367

Chip spreader 1-2, 402-406, 403, 405; calibration 405; fan-tail 18; Flaherty 18; roller 18, 402-404, 403; self-propelled 404-405, 405; short wheel-based tip truck 1-2; trucks 1-2, 402; truck-mounted roller 402-404, 403

Chip spreading hazards 33-34, 404, 425, 432, 435-438, 436-437; worked example for chip volume 435

Chipseal advantages of 3-5, 49; definition 46-49, 47; Hanson’s work 5-7, 331-332; history 3-21, 4, 5; philosophy 4-7; technology 41-76, 77-87; terminology 41-46; types 49-66, 165-169; see also Aggregate, Binder, Chip, Chipseal surfacings, Design algorithm, Life cycle of chipseal

Chipseal construction, see Construction of chipseal

Chipseal defects, see Defects

Chipseal design, see Design algorithm

Chipsealing in New Zealand 313
Chipsealing in New Zealand

Chipseal hazards, see Hazards
Chipseal materials, see Materials for chipsealing
Chipseal plant, see Equipment for chipsealing
Chipseal repairs, see Pavement repairs, Preseal preparation

Chipseal selection, exception reporting for 180-181; flow charts for 163, 171, 172, 180; forward works programme 142-143; intelligent treatment identification 145-146, 170; investigations for 170, 171-181, 172, 194, 199, 233, 341-343, 420-422; life cycle 139, 150-155; location 421, 422; options 163, 167-169, 172, 176, 178-180, 180, 188, 194, 212, 216, 217; sealing sequences for 163, 172; surfacings for 49-66; systems for 144, 172

Chipseal selection for bridge abutments 189, 190, 191, 193, 193; bridge decks 188-194, 192; coarse textured surfaces 173; community issues 204, 205, 208-209, 212-217, 421-422; cracked surfaces 174; engineering issues 171-181; environmental reasons 212-214; first coat treatments 165-168; flushed surfaces 171; frost, ice & snow 194-203; layer instability 177-179; noise reduction 204-212; pretreatments 50, 53, 168, 225, 252, 253, 254, 351; prime coats 168; principles 163-165; road user safety 181-187; roadmarking contrast 187-188; second coat treatment 169; site assessment 170-172, 172, 194, 199, 341-343, 420-422; smooth surfaces 171, 172; stressed surfaces 98, 152, 153, 167, 171, 174-177, 182, 184, 185-186, 245, 354, 426, 440, 445, 466, 472, 477; texturing seal 166, 168, 225, 244, 252; traffic noise 204-208; treatments 165-168; treatment lengths 139, 140-142, 178, 181; voidfill 173; water spray 186-187; see also Bridges, Chipseal surfacings, Community & chipseal selection, Frost, ice & snow, Life cycle of chipseal, Skid resistance, Traffic noise

Chipseal surfacings 49-66, 166-169; see also Dry lock, Enrichment, First coat, Multicoat, Pretreatment, Prime coat, Racked-in, Reseal, SAM, Sandwich, Second coat, Single coat, Two coat, Two coat as first coat, Voidfill, Wet lock seals

Chipseal variables, see Design variables
Chipsealing, see Chipseal, Chipseal selection, Chipseal surfacings

Chipsealing hazards, see Hazards
Chipsealing materials, see Materials for chipsealing
Chipsealing operations, see Construction of chipseals
Chipsealing plant, see Equipment for chipsealing
Chipsealing site assessment, see Chipseal selection
Circulating systems 390-393, 392, 393; see also Bitumen distributor, Pumps & pumping systems

Clothing for chipsealing, see PPE
CMA use & hazards 201
Coal tar 3-7, 12; carcinogenic properties 7; as primer 12
Cold conditions, see Frost, ice & snow
Combination roller 409, 409
Community & construction, check list 425-426, 456; liaison 33, 34, 215, 421-422
Community & chipseal selection 143, 212-217; aesthetics & appearance 216; complaints 214-215; cost 150; fuel consumption & tyre wear 217; noise 204, 205, 208, 210, 215; pedestrians & cyclists 216; tracking 215-216
Compaction 5, 176, 193, 227; effect on performance 96-97; effect on voids 98, 103, 408, 440; trials 96-97, 96, 97; see also Rolling
Condition, see Asset management
Construction of bitumen emulsion seal 446-451; see also Bitumen emulsion
Construction of chipseal 419-456; check list 425-426; consumables 423; contract requirements 420; design assessment 422; drum rolling 440 equipment 423; materials 424; on the day 438-446; organising 419, 425-426; plant 380-412, 423; programming 419-426; rolling 425, 426, 438-440, 439, 451, 454; standards 138; traffic management 423
Construction of PMBs 451-454; see also PMBs, PMB construction
Construction plant, see Equipment for chipsealing
Contamination of chip, precoat, seal 277, 311, 424, 466; run-off 213-214, 254, 276, 302, 419, 456
Contract requirements 10, 236, 254, 303-304, 419, 420
COPTTM compliance 25, 28, 33, 387, 401, 423, 438
Corner, effects of 174-175, 404
Costs 120, 142-143, 150-151, 152, 154-155, 176, 244, 455; worked example 153, 155; see also Asset management
Crack sealing 238-240, 297-298
Cracking 52, 79-82, 100-102, 106-107, 111, 113, 118-119, 172, 174, 190, 226, 236-240, 359, 370; & ageing, failure 101, 111; precautions 240; repairs for 236-240, 239; in structural layers 237-238; in surface layers 238-240; using PMBs 295, 297-300, 304, 451
Cracking types 79-82; RAMM definitions 77-82; see also Alligator, Block, Longitudinal, Shrinkage, and Transverse cracking
Crashes 119, 120-122; Investigatory Levels 121; policies for 119-120; & seal selection 181-186; & skid resistance 119-121, 181
Crumb rubber 11, 297
Crushing 308-310; see also Chip production
Crushing resistance test; see also Chip properties & tests
Curing of binder 97; of bitumen 264, 421, 450-451; of bituminous emulsion 283, 360; green-strength 290; of primes 168; of slurry 321
Current work programme 138, 143, 170
Cutback, see Cutter
Cutter (Cutback) 46, 51, 93-94, 261, 272, 360, 427-428; hazards 27, 28; how it works 93, 94, 252; for first coat seal 355-356; in primer 12, 51, 52, 168; worked example 429-431; see also Kerosene
Cutting back for binder design 94-96, 361-365; cutback 360; effect of emulsion 363; effect of rolling & traffic 363; effect of shade 362-363, 364; factors affecting design 364; flux 360; objectives 361-362; process 362; viscosity on road 363-364
Cutting back for construction 427-428; for first coat seal 355-356; second coat reseal 358; spray temperature 433; volume required 428; worked examples 429-431
Dangers, see Hazards
Dangerous Goods Act & Regulations 26
Databases, see Asset management, RAMM
Decks for bridges, see Bridges, seal selection
Defects 77-87, 77, 79; rubber build-up 480; see also Bleeding, Chip loss, Cracking, Deformation, Edge break, Flushing, Potholes, Pumping, Ravelling, Roughness, Rutting, Scabbing, Shear failures, Shoving, Skid resistance, Texture loss, Tracking Deformation 77-78, 77, 241-242; see also Defects Delamination of bridge deck 189; of PMB 468; of slurry seal 68
Deleterious matter, removal of 253-254; lichen, weed spraying 254; see also Brooms
Depressions, causes & repairs 241-242
Design algorithm 340-347; 2004 algorithm 344; adjustment of 341-344; binder selection 360-365; Bituminous Sealing Manual 1993 (BSM) 334, 339, 344; chip application rates 365-367; chip selection 367-369; chipseal selection 150-156; TNZ & Austroads algorithms 340, 340, 341; costs 150-151, 151, 153, 155; derivation of 2004 algorithm 337-339, 344; development of 4-7, 331-344; end of life 154, 154, 155; equations for seal life 152; Hanson’s input 5, 13, 331-332; HCVs 338-339; history 4-5, 331-335; impact of life cycle 150-156, 154; & pavement life 151-155, 154; practical aspects 350-354; principles of chipsealing 4-7; RD286 332, 334, 340, 340; research (theory) 6-7, 331-341; residual binder 355-365; sand circle 1/3 equation 333; selection of additives 360-365; selection of binder type 360; sensitivity of 2004 algorithm 344-347; texture 332-333, 333, 339, 344; traffic factor 333; for voidfill 59; worked example 153, 370-374; see also Chipseal selection, Design variables
Design life 108, 109, 150-155; worked example 153, 155
Design variables 341-344, 350-354; absorptive surface 342; chip shape 343; high stress sites 354; homogeneous sections 350-351; low traffic volume 343-344; pavement hardness 354; sensitivity to changes 344-345, 346-347; soft substrate 341-342; spray runs 350; steep grades 342-343; texture variation 352-354; traffic volume 351-352; urban reseals 343-344
Detritus, see Deleterious matter
Diesel 26, 27, 96, 272, 276, 302, 349; see also AGO, Flux
Digout 236-237, 243, 469
Digout & replace 236, 242, 470
Diluent for construction, see AGO, Cutter, Flux, Heavy fuel oil
Diluent loss 94-96, 95; of AGO 95, 96; of kerosene 94-95, 95; trials 94-95, 96; turpentine 95
Diluent & chip 472-473, 473
Dipstick 394
Distributor, see Bitumen distributor
Drag brooming 18, 229, 230, 404, 406, 409, 411, 412
Drainage repairs 234
Drum roller 18, 440
Dry lock seal 63-64, 63; design 164, 176, 343, 348, 354
dTIMS 19, 145
Ductility of bitumen 266
Durability of bitumen 266
Duval attrition test 13
E
Edge break 84, 235-236
Edge rutting 235
Elastomers, see Polymers
eLV (equivalent light vehicles) 103-105, 104, 105, 152, 153, 334, 335, 336, 338
Employers’ duty to staff 25
Emulsion, see Bitumen emulsion, Construction of bitumen emulsion seal, PME emulsion, Slurry seal

Chipsealing in New Zealand 315
Chipsealing in New Zealand

End-of-life, see Life cycle of chipseal, Performance of chipseal

Engineering issues, see Chipseal selection

Enrichment seals 73-74, 163, 164, 169, 476

Environment & construction 25, 34, 51, 212-214, 217, 420-421, 444-456; checklist 456; & emulsion 279, 290; energy efficiency 213, 455; & precoated chip 278, 424; waste minimisation (recycling) 213, 455; water management 213-214, 456; see also Chipseal selection

Environmental conditions for chipsealing, see Frost, ice & snow

Equilibrium SCRIM Coefficient (ESC) 127-129, Exception reporting

Evaporation of cutter 94-95, 95; of flux 96

Events, effect on construction 421-422

Exception reporting 145, 180-181, 182

Expected or average seal life, see Life cycle of chipseal

Explosions

Fabric, use of 476-477; see also Geotextile seal

Failure of chipseals 461-481; see also Ageing of bitumen, Binder rise, Bleeding, Chip loss, Cracking, Embedment, Flushing, Life cycle of chipseal, Performance of chipseal (temperature, traffic), Re-orientation of chip, Skid resistance, Texture loss

Failure localised 470-476; major 476-479

Failure of granular basecourse 229-231; pavement 236-253; by shear failure 242-244; of stabilised pavement 231-232; of surface texture 245-253

Falling Weight Deflectometer (FWD) 243

Fan-tail spreader 1-2, 18; see also Chip spreader

Fatigue cracking 100-102, 101, 299

Fire hazard 27

Fire triangle 27

Firefighting 419, 420

First aid, Bitumen Burns Card 31-32, courses & manuals 25; treatment for burns 30-32

First coat seal I-2, 12, 47, 50, 50-51, J63, 164-167, 166, 463, 468, 471; design 355-356, 365-367, 370, 428, 447; failure 112; preparation 223, 225-229; prime coat 51-52, 168; on stabilised pavement 231-232; see also Single coat, Single coat seal

Flaherty chip spreader 18

Flame tube heating, see Heating systems

Flash point of bitumen 26, 264; of kerosene 26

Flexible pavement 44

Flow charts 135, 148, 149, 163, 171, 172, 179, 180


Flux 95-96, 226, 272; & design 359, 360, 371; for construction 401, 428, 432; see also AGO, Diesel

Foaming 27, 278, 291, 449

Fog coat 73-74, 164

Footpath defects 77; surfacing for 67, 216

Forward works programme 138, 142-143, 146-147, 149, 170; impacts on schedules 148-150; & management 147; & NOMAD 147

Freeze-thaw effects 111, 229; see also Frost, ice & snow

Frettng, see Chip loss, Ravelling

Fritction, see Skid resistance

Frost, ice & snow 194-203; binder selection 203; chip selection 202; chipseals for 200, 202, 203; CMA use 201, 201; dew 197-198; effect of shade 198; effect of texture 200, 200; formation of 195-199; freeze-thaw, frost heave effects 111, 229; hoar frost 196-197; identifying sites 198-199; management for 200-201; resurfacing for 201-203; RWIS 199; & skid resistance 198-200, 199; snow plough damage 55, 57, 197, 202; thin ice 197; timing 203; see also Temperature (weather), Weather

Gabbar, Gangsprayer, see Spraybar

Geotextile seal 74-76, 74, 75, 164; design 349, 369; fabric use 476-477; repairs 174, 191, 192, 240, 470, 476-477

Grade chip size, see Chip production, Chip properties & tests, Chipseal selection

Gradient steep, effects of 175, 185

Granular basecourses 225, 232, 235-239; criteria for 227; effect of fines layer 228; failure 229-231; preparation 225, 227-228

Granular overlay & repair 179, 238, 470, 477, 479

Gravel, see Aggregate

Greenfield sites 168
Green-strength 290, 446
GripTester 120, 182
Gritting 229, 471
Ground water contamination 278, 456
Guardrail 187, 445

H
Hairline cracking, see Cracking
Hand spraying 7, 9, 14, 15, 14, 17, 47, 192, 380, 381, 388, 389, 392, 393, 415-416, 444-445, 444; hazards 7, 8, 14-15, 14, 17; see also Spraying
Hanson 4, 5-6, 6, 13, 21, 331-355, 366; Hanson’s equation 332
Hard substrate, see Soft substrate
Hardening of bitumen 98-99, 117, 265, 270-271; & RTO test 265; see also Ageing of bitumen
Hardness & modulus 266-270
Hazards, BCA 9904 compliance 387, 400; legal requirements 26; safety requirements 25-34
Hazards from binder 25-32, 400-401, 440, 427; blending 400-401, 427; burns 19, 30-32; chipsealing operations 7-8, 19-20, 26-27; chipsealing operations 16-20, 28-34, 400-401, 420, 424, 427, 440; coal tar 7; explosions 27; fire 27; heating binder 440, 427; PMBs 294, 454; precoated chip 424; primer 12, 51; spraybars 386-387; traffic 33; transferring 427; PMBs 294, 454; precoated chip 424; primer 12, 51; spraybars 386-387; traffic 33; transferring binder 28, 401; vapour in confined spaces 27-28; water in bitumen 27-28, 449
Hazards to community 34, 215; environment 25, 34, 214; health 26-32
HCV, see Heavy vehicles
Heating binder for construction 433, 434; see also Heating systems
Heating factors for bitumen 434; for emulsion seal 448
Heating systems 8, 16-17, 399-400; electrical heating 17, 400; flame tube 16, 400; hazards 399; oil 17
Heavy commercial vehicles, see Heavy vehicles
Heavy fuel oil 272, 359; see also Cutter, Flux
Heavy vehicles (HCV), effect on binder application rate 338-339; effect on chipseal 6-7, 78, 130, 130, 152, 175, 187, 205; elv 103, 104, 105, 152, 153, 334, 335, 336, 338; noise of 204, 210-212; seal selection for 167; & water spray 186; worked example 153
High pressure water treatments 168, 178, 213, 225-226, 248-251, 249, 250, 456; water blasting 250-251, 251, 470-471; water cutting 226, 249, 250, 480
High stress seals 174-177, 202, 300, 451, 466
High stress sites 172, 354, 440, 445
Highway, see Road
History of chipsealing 3-21
Hoar frost, see Frost, ice & snow
Homogeneous section 350-351, see also Design variables
Hot chip treatment 178, 180, 471-472
Hot mix asphalt (HMA), see Asphaltic concrete
HSE (Health & Safety in Employment) Act 26
HSNO (Hazardous Substances & New Organisms) Act & Regulations 26
Hysterisis 123; see also Skid resistance

I
Ice, see Frost, ice & snow
Ignition Point of bitumen, kerosene 26
Incompatibility in PMBs 293
In-service performance, see Performance of chipseal
Inspection 121, 138, 140, 182, 199, 233, 380, 399, 479
Instability, see Layer instability
Instrumentation for binder application rate 396-397; for bitumen distributor 394-396; for spray control 398; for temperature measurement 395-396; see also Equipment for chipsealing
Inventory of assets 138, 144-145; dTIMS 145; RAMM 145-146; PMS 137-144
Investigatory Levels 121; & crashes 121; & skid resistance 121; & T/10 181-182; see also Skid resistance

K
Kerb & channel (K&C) preparation 234
Kerosene 12, 26, 46, 51-52, 94-95, 203, 248, 272, 276, 280, 283, 301, 302, 429-431, 449, 472-474, 473; in design 355, 358, 360, 362-364
Land Transport Safety Authority 20
Land Transport New Zealand 20
Layer instability 111, 113-116, 115, 177-179, 180; binder:stone ratio 177-179, 180; cumulative seal depth 177; options for 178-179, 180; recycling 179, 478-479, 478; sandwich seal for 60; shallow shear failure 114-115, 115; voidfills for 59
Legislative requirements 26
Level of service 137, 138, 139-140, 144, 145, 154, 180
LGA (Local Government Act) 146
Lichen & preseal preparation 293
Life cycle of chipseal 150-155, 154; ageing & oxidation 93, 100-102, 237, 270, 466, 480; chip loss & weather 111; cracking & hardness 100-102, 111; economic design 150-155, 151, 153; end of life cycle 100-102, 108-109, 155, 154; flushing & layer instability 111-117; impacts on seal design 150-156; long-term performance 100-102, 118-119;
polishing 110, 126; post-construction performance 93-100; short life 110-117; soft substrate 112-113; texture & traffic 101, 103-105; worked example 153; see also Asset management, Chipseal selection, Performance of chipseal

Loading on chipseals 44-45, 46, 100-102, 152, 153, 182, 189, 266-270, 469

Localised failures 470-476

Long-term performance 100-102; effect of traffic 6, 98-99

Longitudinal cracking 79, 81; RAMM definition 81; see also Cracking

Loss of diluent 94-96, 95

Macadam 3-4

Macrotextrue 46, 85, 87, 122-124, 122, 123, 124, 156, 440, 464; chipseal selection for 173, 200, 202, 249, 332, 477; ESC 129; PSV 130-131; frost 198, 200-202; OGPA 477

Maintenance strategies 147-150

Major failures 476-479

Management systems, see Asset management

Management for cold conditions, see Frost, ice & snow

Marsden Point refinery 9, 98, 262, 359

Materials for chipsealing 261-322, 424-425; see also Additives, Adhesion agents, Antifoaming agents, Binder, Bitumen, Chip, Cutter, Emulsion, Flux, PMB, PME, Polymers, Precoating, Slurry

Materials for slurry seals 320-322

Mean profile depth (MPD) 86-87, 179, 198-199, 199, 200, 358

Mean Summer SCRIM Coefficient, see MSSC

Membrane seal 72

Microclimate 358

Microtexture 46, 86-87, 122, 124, 129, 250, 301, 313, 480; masked by binder 86-87, 156, 301, 466; repair of 250, 480; see also Skid resistance

Middle East oil 8, 9

Millling (scarifying) 190, 244, 478-479

Ministry of Works (MOW) 20

Ministry of Works & Development (MWD) 20

Model (modelling) 19, 140, 145-147, 146, 178, 199, 208, 211-212, 357, 358

Modulus of bitumen 266-270

MSSC 126-129, 127, 128, 129; see also Skid resistance

Multicoat seal (multiple coats) 46, 55, 108, 172, 178-179, 191; design 341, 347-350, 353, 367; layer instability 113-116, 477, 478; see also Dry lock, Racked-in, Two coat, Sandwich, Wet lock seals

N

National Roads Board (NRB) 5, 20

National Environmental Standards (NES 2004) 34, 250

New Zealand, chipsealing in 3-21; length of road 7; map vi

Noise, definition 204; see also Traffic noise

NOMAD 147

Norsemeter RoAR 120, 182

Nozzles for spraybar 380-382, 381, 382-386; adjusting 383, 385-386, 386; conical, slotted, V-jet 381, 381; & viscosity 382

O

OGPA, OGEM, see Open graded mixes

Oil, shortage in 1970s 13; sources 7-10; uses 48, 262, 272; heating system 17; see also Bitumen sources

Open graded mixes as repair 187, 248, 252, 477; OGPA 72, 176, 187, 202, 248, 252-253, 253, 299, 342, 477; OGEM 72, 252, 253, 342, 463

Operational hazards 28-29; see also Hazards

Operational plant, see Equipment for chipsealing

Outputs of asset management 138, 142-143; current works programme 138, 143; forward works programme 138, 142-143, 146-147, 149; see also Asset management

Overlay 179, 433, 470; see also Granular overlay

Oxidation, 93, 100-101, 237, 270, 466, 480; see also Ageing, Hardening

P

Particle size (psd, PAP, AP) 67, 307, 318, 320

Patching, timing of 226

Pavement, construction & rolling 227; definition 41; flexible 44; functions of 44-46; layers 41, 42-43, 44-46; rigid 44; stresses in 44-46; surfacings 44, 49-76; terminology 41-46; see also Basecourse, Chipseal surfacings, Defects, Pavement repairs, Soft substrate, Sub-base, Subgrade

Pavement defects, see Defects

Pavement failure, see Failure

Pavement hardness 354; see also Soft substrate

Pavement layers, see Basecourse, Chipseal surfacings, Soft substrate, Sub-base, Subgrade

Pavement lives 151-155; worked example 153; see also Performance of chipseal

Pavement Management System (PMS), see Asset management

Pavement preparation, see Preseal preparation
Pavement repairs 233-253; chip loss 245-246; cracking 174, 236-240; deformations 241-244; depressions 241-242; digouts 236; flushing 247-251; permeable surfaces 252-253; potholes 242-244; prevention of chip loss 480-481; reseals 236-253; rough surfaces 244; shear failures 242-244; surface texture 245-253; weak areas 242-244; wheel ruts 241-242; see also Remedial treatments

Pavement types 44; see also Asphaltic concrete, Chipseal surfacings, Slurry seal, Specialist surfacings

Penetration grade & testing 262-263

Penetrometer 243

Performance of chipseal 6, 93-119; & ageing, cracking 93, 101; expected life 93, 108-107; in-service performance 93; long life 100-102, 118; loss of diluent 94-96; post-construction 93-100; & rolling 96-97; short life 110-117; & skid resistance 119-131; & temperature 97-100; & texture 101; & traffic 101-102, 101, 103-105, 104, 105; & voids 335-336, 336; see also Life cycle of chipseal

Permeable & absorptive surfaces 252-253

Personal Protective Equipment, see PPE

Plant for chipseal construction, see Equipment for chipsealing

Plastomers, see Polymers

PMBs (PMB seals) 291-305; additives for 301, 302; as emulsions (PMEs) 285, 302; failure 304; handling 293, 453-454; hazards 294, 453; history 5, 11, 291; manufacture 292-293; specifications for 292, 303-304; storage 293; testing 292; uses 291, 297-301; see also PMB construction, PME, Polymers

PMB application rates 301-302

PMB construction 451-454; material selection 451-452; spray rate calculations 452-453; spray temperatures 453

PMB uses 297-301; bandaging 298; crack sealing 298-299; high stress seals 300; SAMs 298-299 SAMIs 299; severe climates 300-301

PMEs 285, 302; construction 454; materials 447; spray rate calculations 447; see also Polymers

PMS (Pavement Management System), see Asset management

Pneumatic-tyred roller (PTR) 407-408, 407

Polished Stone Value, see PSV of chip

Pollution control 34, 168, 420, 451

Polymers 11, 291-305; & binder design 361; crumb rubber 297; elastomers 294-296; plastomers 296-297; see also PMBs

Porosity 186, 204, see also Open graded mixes

Porous surfacings, see OGPA, OGEM

Portland cement use 44, 322; & stabilisation 231-232

Post-construction performance 93, 94-100; loss of diluent 94-96; & rolling 96-97; settling down 93; & temperature 97-100; & traffic 6, 100-105, 107, 104, 105

Potholes 83-84; RAMM definition 84; repairs 84, 242-244; see also Defects

PPE (Personal Protective Equipment) 28, 29, 401

Practical aspects of design, see Design variables

Precoating 11-12, 176, 275-278, 424-425, 471-472; design 349-350, 361, 364; handling 277; hazards 277-278, 424; manufacture 276-277

Preparation, see Preseal preparation

Preparation for bridge surfacing, see Preseal preparation

Preparation for construction before sealing day 419; contract requirements 420, for emulsion seal 446-451; on the day 438-445; site assessment 420-422; techniques 426

Preseal preparation 223-254, for bridge surfacings 194; drainage & shoulder repairs 233-236; existing pavements (reseals) 224-225; first coat seals (new, unsealed) 50, 223, 225-228; goals 223; investigation 233-234; pretreatment seals 168, 225; priming 168, 356; removal of deleterious matter 253-254; surface texture repairs 233, 245-253; timing 225-226; see also First coat seals, Prime coats

Pretreatment 50, 53, 168, 225, 252-254, 253, 351; see also Preseal preparation


Principles of asset management, see Asset management

Principles of chipsealing, see Design algorithm

Principles of seal selection, see Chipseal selection

Prioritisation, see Asset management

Product development 143

Production of aggregate, see Chip production

Production property tests, see Chip properties & tests

Programming reseals 143, 145-148, 156, 170; see also Chipseal selection, Current work programme, Forward works programme

PSV (Polished Stone Value) 13, 48, 129-131, 130, 182, 313-315, 314, 367; equation 130, 184-185; polishing of chip 110, 120, 131, 182; & seal selection 182-186, 202; test 313-315, 314; worked example 185-186; see also Skid resistance

Public Works Department (PWD) 20

Pumps & pumping systems 390-393, 391, 397, 397; for distributors 390-393; types A, B, C 390-393; see also Circulating systems, Equipment for chipsealing, Instrumentation
Chipsealing in New Zealand

520

Repairs, Reseals 52-58; Remedial treatments for localised failures 470-476; Remedial treatments
Rejuvenating seal 73-74; Re-orientation of chip 251, 252; & AWPT 154-155; design 331, 343-344, 354-357, 365; for defects 106-107; for end of life 154-155; reasons for 106-108, 106, 469; & second coat seals 356-359; selection 172, 173-174, 180, 180-181, 447, 474, 478, 479-480; & temperature 357-359, 428; timing 156, 226; & traffic volume 103-105, 104, 105, 107; worked example 155, 370-374; see also Chipseal selection, Design algorithm

Reseal preparation, see Preseal preparation, Chipseal selection

Reseals as repairs 479-480; for chip loss prevention 480; as crack repair 236-237; at short notice 479-481; unscheduled 479-480; see also Preseal preparation, Remedial treatment

Research 5-6, 10, 93-118

Residual binder design, see Binder (residual) in chipseal design

Resurfacing, see Surfacings, Chipseal surfacings

Retention of chip, see Chip loss

Rheological properties 262-271

Rigid pavement 44

Ring & Ball test (ASTM D36) 271, 342

Risk assessment, see Asset management

Risks with precoating 277-278; environmental 278; safety 277; tracking 278

RMA (Resource Management Act) 26

Road 41; surfacings for 41, 49-76; terminology 41-46

Road asset management, see Asset management

Road Controlling Authority 7, 19, 20, 34, 41, 120, 144, 145, 151, 187, 197, 208, 212, 214, 215, 216-217, 234, 421, 455, 479, 480

Road factors affecting skid resistance, see Skid resistance

Roadmarking 187-188

Road traffic noise, see Traffic noise

Road user safety & seal selection 181-187; & crashes 181-183; PSV 184-186; road marking 187-188; skid resistance 181-186; treatments for 182-185; worked example 185-186; water spray 186-187

Road Weather Information System (RWIS) 199;

see also Frost, ice & snow

Roading New Zealand (RNZ) 25, 31, 32, 387

Roadway 41

RoAR Norsemeter 120, 182

Rollers & rolling I-2, 18, 96, 407-409, 425, 438-440; combination 409, 409; pneumatic-tyred (PTR) 407-408, 407; roller spreader 18; rubber coated vibrating steel drum 408, 408; rubber-tyred 18

Rolling 96-97, 425, 438-440; compaction effect 96-97, 96, 97; drum rollers 408, 440; research 5, 6, 48, 96-97, 112, 113, 331, 363, 440; by traffic 97, 363
Rolling resistance 13
Rollover of chip, see Embedment of chip
Rotary broom 224, 410, 411
RTFO (Rolling Thin Film Oven) test 265
Rough surfaces, Roughness 86; see also Defects, Pavement repairs
Rubber use of 11, 291, 295, 296; crumb 11, 297
Rutting 77, 77-78; RAMM definition 78; see also Defects
RWIS 199, see also Frost, ice & snow

Safaniya bitumen, see Binder
Safety, see Hazards, Skid resistance
SAM seal 65-66, 164; design 66; cracking 65, 174, 238, 240; flushing 248; PMB 295, 298-300
SAMi seal 72, 172, 174, 240, 295, 299-300
Sampling bitumen emulsions 287-288; chips 311, 314
Sand circle test T/3 172, 332-333; sand circle T/3 equation 333; & texture 332-333, 333; & ALD/16 rule 352-354
Sandwich seal 59, 60-61, 60, 61, 164, 172, 179, 180, 248, 333; design 348-349, 369; & layer instability 61; layer sequence 60, 475; as repair 179, 248, 369, 470, 474-475, 475
Scabbing 82, 102, 106, 467; RAMM definition 82; see also Chip loss
Scalds 30
Scarifying (milling) 190, 478-479
Screening, see Chip production
Screen (strainer), see Bitumen distributor
SCRIM, see Skid resistance
Scuffing, tyre scrub 175, 202, 466; see also High stress seals
Seal, see Chipseal, Chipseal selection, Chipseal surfacings, Chipsealing
Seal design, see Design algorithm
Seal performance, see Life cycle of chipseal
Sealing chips, see Chip
Seasonal variation, see Skid resistance
Second coat seal 52-53, 168, 169, 367; design 356-359
Segmentation, see Design variables
Sensitivity of design algorithm 344-345, 353; to changes in variables 346-347
Settling down period, see Post-construction Settlement 287, 289, 446; see also Bitumen emulsion
Shade effects, see Weather
Shear failure 78-80, 87, 111, 113-116; repairs 242-244, 478; see also Defects
Short life, see Life cycle of chipseal
Shoulder 42
Shoulder repairs, see Preseal preparation
Shoving 77, 78, 79, 87; RAMM definition 78; see also Defects
Shrinkage cracking 79, 81; see also Cracking
Sideway Force Coefficient (SFC), see Skid resistance
Single coat seal 11, 53, 53-54, 74, 97, 103-104, 103, 104, 152, 163, 164, 172, 176, 177, 202, 217, 298, 367; design 331, 334, 337, 347; worked example 153, 370-374
Site assessment, see Chipseal selection
Site-specific adjustments, see Design variables
Skid resistance 119-131, 181-189; BPT test 120, 182, 315, 315; & chip properties 129-131; control sites for 126-127, 129; correction factor 129, 129, 185-186; & crashes 119-122, 181, 183, 201; equilibrium skid resistance 123; ESC (year on year variation) 127-129, 128, 129; GripTester 120, 120, 182-183; hysteresis 123; investigatory levels 121; measuring 119-120, 129, 182-183; MSSC (within year variation) 126-129, 127, 129, 183; Norsemeter RoAR 120, 120, 182-183; polishing 110, 125, 126, 128, 129; PSV 48, 110, 129-131, 130, 182, 184-186, 313-315, 314, 367; SCRIM 119-120, 120, 182, 183; seasonal variation 125-129, 125, 127, 128, 129; Sideway Friction Coefficient (SFC) 130, 182; & traffic speed 123-124, 124; traffic volume & type 130, 130; tyre interface 122-124, 123, 124; water film (aquaplaning) 123-124, 123, 241; see also Frost, ice & snow, Macrotexture, Microtexture, Texture
Skidding, see Crashes, Skid resistance
Slick surface 86; see also Flushing
Slurry seal 66-71; aggregate types for 67, 320-321; cape seal 69-71; cement for 321-322; durability 69; emulsion 68, 321; air temperatures 68; materials 320-322; & road noise 67-68; water 322
Snow, see Frost, ice & snow
Soft substrate (soft soils) 3, 74-75, 74, 75; calcined bauxite 73; & ALD/16 74, 75; & chip properties 113; repairs over HMA 112, 112; over weak pavements 113; see also Rejuvenating seal 73-76; calcined bauxite 73; enrichment seal 73; fog coat 73; geotextile seal 74-76, 74, 75; rejuvenating seal 73; see also Frost, ice & snow, Macrotexture, Microtexture, Texture
Skidding, see Crashes, Skid resistance
Slick surface 86; see also Flushing
Slurry seal 66-71; aggregate types for 67, 320-321; cape seal 69-71; cement for 321-322; durability 69; emulsion 68, 321; air temperatures 68; materials 320-322; & road noise 67-68; water 322
Snow, see Frost, ice & snow
Soft substrate (soft soils) 3, 74-75, 111-113, 462; effects on algorithm 341-342, on granular bases 112; over HMA 112, 113; over pavement repairs 112, 114; over weak pavements 113
Softening point of bitumen 271, 303
Solubility of bitumen 264
Solvent, use 472-473, 473; see also Cutter, Flux
Sound definition 204, see also Traffic noise
Source property tests, see Chip properties & tests
Span, see Bridges
Specialist surfacings 73-76; calcined bauxite 73; enrichment seal 73; fog coat 73; geotextile seal 74-76, 74, 75; rejuvenating seal 73
Specifications 9-10, 13; B/2 225-228, 356; C1 42, 43; M/1 262-266, 271, 285, 288, 360; M/4 225, 228, 231; M/6 48-49, 307, 312-313, 316-318, 320, 364, 367, 432; M/10 307; P/11 211, 477; P/17 100, 135, 148-149, 337, 342, 420; P/26 250; T/3 86, 333, 339, 372; T/10 121, 181, 184, 187, 315, 367, 480; for PMBs 292, 303-304

Spillage hazard 214, 419-420

Sprayer, see Bitumen distributor

Sprayer calibration 17-18, 389-390, 389; adjusting 383-386; adjusting gauge 385-386; BCA E/2 compliance 380, 382, 390; spray application chart 380, 390

Spraying 380-389, 394-398; calculations and tables 428-431, 433-434, 447-448, 452; for construction 441; coverage (overlap) 15, 380-386, 383-386; difficult areas 443-445; hand spraying 9, 14, 19, 388, 389, 415-416, 444-445, 444; history 14-15; practical aspects & design 350; spray runs 442-443; spray temperature 16, 27, 464-465; spray temperature 16, 27, for bitumen binder 432, 433, 443, for emulsions 448-449, for PMBs 453; start-finish 388, 389, 442

Spraying equipment, see Spray nozzles, Spraybar

Spray nozzles 380-386; end nozzles 384, 441; types 15, 380-383, 381, 382, 384-386, 441

Spraybar 380-389; control 386, 398; height 441; operation 384-389; variable rate 382-383, 441, 443

Spraying hazards, see Hazards

Spreader, see Chip spreader

Stabilised pavements, Stabilisation 231-232, 238, 279, 478; preparation for reseal 112, 231-232, 244; failure of 81, 231-232

State highways NZ, length 7

Strategy, see Asset management

Steep grades, effect on algorithm 342-343, 351, 362, 373-374; high stress seals for 174, 177

Stiffness modulus of bitumen 266-271, 268-271

Stockpiling 277, 311, 371, 419, 455; see also Chip production

Stone, see Aggregate, Chip

Stone mosaic 227, 231, 319, 369, 407, 451

Storage of bitumen emulsion 286-287; of PMBs 293

Strainer (screen) maintenance 396

Strategy, see Asset management

Stress factor in skid resistance 185; worked example 185-186

Stresses in pavements 44-46, 45, 78


Stripping, see Chip loss

Sub-base 44

Subgrade 41

Substrate, see Soft substrate

Suction sweeper 411; see also Brooms

Surface texture repairs, see Preseal preparation

Surfacing selection, see Chipseal selection

Surfacings 49-76; see also Asphaltic concrete, Chipseal surfacings, Slurry seal, Specialist surfacings

Sweeping & sweepers 224, 229-230, 254, 409-412, 411; see also Brooms

Synthetic aggregates 306

T

T/3 sand circle equation 333

Tachometer 394-395

Tanker, Tankwagon, see Bitumen distributor

Tar, coal 3-4, 7

Tar kettle, Tar 8, 17

Tar macadam, Tarmac 3-4

Temperature (for chipsealing) of binder 432-434, 448; measurement of 395-396; & cracking 100, 111; & cutter 95; & properties 98-99, 111, 113, 266; trials 97, 98-99, 99

Temperature (weather) effects if low 48, 98, 301, 359, 439, 445; if high 99, 301, 357-359; on performance 97-100, 301, 357-359, 445; on roads 360, 362-363; of seasons 98, 111; of shading 445, 451; see also Frost, Ice & snow, Weather

Terminology 41-46


Texture loss 86, 87, 461-466; & binder rise 463-464, 463; bleeding 464, 465-466; & chip embedment 462-463; chip loss 466-468, 467, 468; & chip re-orientation 462; flushing 464, 465; & high binder application 462; tracking 464-466, 465

Texturising seal 224, 229-230, 254, 409-412, 411; see also Brooms

Thermal analysis 13

Thin ice, see Frost, Ice & snow

Timing, see Chipseal selection, Preseal preparation

Timeline 4-5
Variables for design, see Design variables

Vegetation control 42-43, 199, 420; see also Weather

Vehicle speed 28, 48, 59, 123-124, 124, 169, 204-205, 210-211, 351, 390-391, 394, 396, 402, 404, 451, 464; see also Skid resistance

Vehicles for chip spreading, see Chip spreader, Equipment for Chipsealing

Verge, see Shoulder

Vibrating roller, see Rollers

Viscoelasticity 94, 116, 267-270, 474

Viscometer 263, 263, 288, 289


Voids basic concept 5, 6, 98, 99, 99, 103-105, 103-105, 173, 331, 332, 334-335, 334, 336, 337, 337, 343, 361, 453; chip embedment 103, 298, 299, 301, 334-335; clogged 165, 248, 312, 318, 471, 477; design algorithm 252, 337, 338, 346, 365, 366; Hansson 1993 input 5-6, 6, 331-332; OGPA 72, 211, 253, 277; & single coat seals 103-104, 103, 104; & texture 332-333; & traffic 6, 6, 103-105, 332-334; & two coat seals 105, 105; volume of HCV 103-105, 338-339

Voidfill seal 58-59, 74, 109, 163, 164, 166, 173, 252; binder:stone ratio 59, 116; design of 59, 352, 360, 367, 447; materials for 67, 286, 360, 447; seal selection 74, 163, 163, 167, 173, 331, 348, 356, 481; texture depth allowed 59, 348, 352; as repair 481

Volcano 117, 117; see also Vapour venting

W

Water blasting 168, 178, 180, 249-251, 251, 470-471, 480

Water contamination, see Hazards, Contamination of run-off

Water cutting 226, 249-250, 250, 480

Water film & skid resistance (aquaplaning) 123-124, 123, 124, 131; & binder-chip adhesion 361; see also Skid resistance

Water spray & seal selection 186-187

Weak substrate, see Soft Substrate

Vacuum broom 411-412, 411; see also Brooms

Vapour, see Hazards

Vapour venting 111, 117, 117, 247, 463

Weathering resistance test for chips 312-313; see also Chip properties & tests

Weed spraying 226, 254

Wet lock 62-63, 62, 164; as repair 343, 470, 475-476; binderstone ratio 62; design of 348; materials for 447; seal selection 164, 202

Wet road, crashes & skid resistance 122-124, 123, 124; see also Skid resistance

Wheel ruts 77-78, 233, 241-242, 243, 408, 440

Wooden bridge decks 52, 191, 192, 194

Worked examples, application rates 370-374; for chip volume 435; conversion of pph 429-431; economic seal selection 153, 155; for PSV 184; single coat seal 370-374; for skid resistance treatment 185, 186

Y

Yearly variation, see Skid resistance; within year, see MSSC; year on year, see ESC

Z

Zone, no-smoking 27; climatic 98; weak substrate 243; tyre print 123