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ABSTRACT

Experimental and theoretical studies of the properties and performance of
electromagnetic loops and feeder lines used in road vehicle detection
systems were carried out to determine causes of erratic behaviour of loops,
and to improve their performance.

Basic concepts and terminology of loops are introduced and the effects of
objects in their proximity are studied. The magnetic flux density
distributions near rectangular and quadrupole loops are analysed, assuming
the loops to be in free space or away from other objects that may affect
their magnetic fields. Magnetic flux density distribution for a quadrupole
loop is compared with published measured spatial sensitivity for the same
type of loop. The comparison indicates a strong correlation between spatial
sensitivity of a loop, defined as the relative change in loop inductance
caused by an object’s presence, and its magnetic flux density distribution.
From these findings, optimum loop sizes that give maximum sensitivity to
conducting sheets are determined using horizontal plane sheets to simulate
a vehicle’s underside such as of a car or truck, and vertical conducting
sheets to model motorcycles and bicycles.

The effects of various types of feeders (or transmission lines) on the
sensitivity of the loop-feeder system are defined and an analytical expression
for the sensitivity is derived. A relationship exists between the value of the
loop reactance and the feeder characteristic impedance that reduces the
adverse effects of the feeder Iength.

The effects of conducting screens (slabs, steel reinforcing in concrete, etc.)
on loop performance are also investigated both analytically and
experimentally using models. Again, the results show excellent agreement
in that the sensitivity of a loop is reduced dramatically by the presence of
conducting objects, although ferromagnetic materials do not seem to have
such a great effect as non-ferromagnetic materials.

1. INTRODUCTION

The motivation for this study arose from discussions with Dr Alan Nicholson, Department
of Civil Engineering, University of Canterbury. Reports that vehicle detection systems often
behave in an erratic manner suggested that their operation needed to be investigated with the
view to possibly improving their performance. Thus the loop-detector combinations of a
number of vehicle detectors were observed with the loops above ground, i.e. not cut into a
road surface, taking into consideration the limitations of this experimental approach.



The erratic behaviour of the complete system was difficult to determine and the problem was
further compounded by the nature of the chips contained in the electronic detectors. These
were proprietary chips, being specially developed for the company and for which no data
could be obtained. Thus, only the three main accessible components:

loop or front end of the sensing system,

feeder or connecting link between the sensor and electronic detector, and the

proprietary electronics,
were investigated to determine the properties of loops and the effects of feeder on the
sensitivity of the system operation.

The properties of loops have been experimentally investigated extensively by workers in other
parts of the world but especially in Australia by the Department of Main Roads, New South
Wales. This analytical study has been designed to complement these earlier investigations
and to give greater insight into the properties of loops when they are used as vehicle sensors.
The study is also designed to clarify a number of problem areas associated with the operation
of loops, and to decide if the mathematical models can be used to theoretically predict the
suitability of a loop configuration for detecting vehicles on roads.

2. THEORY
2.1 Basic Electromagnetic Theory

A conductor carrying an electric current creates a magnetomotive force "mmf". For a wire
element "d?" metres long and carrying a current of "I" ampere, the elemental mmf is:

dH - L.di.sin® Amps
4nR
(Equation 2.1)
where: "0" is the angle between the direction of the current element and the point in

space where the "mmf" is measured, and
"R" is the radial distance from the centre of the element "d{" to the field point.

The "mmf" is a vector quantity. Its direction is given by the right-hand screw about the
direction of the conventional current flow. The mmf lines form concentric curves.

The total field, "H", from the current elements is related to the flux density, "B", a quantity
defined by:

—_ —p )
B = pH (Equation 2.2)
where: "u" is a constant for a linear medium.



A related quantity is the total flux ,"¢", defined by the integral of the flux density over the
area of interest,

b = j ‘B.ds : (Equation 2.3)
AREA

Note: If the area is fixed, then the (total) flux "¢" is proportional to the flux density over
the area.

For a magnetic circuit the equivalent of Ohm’s Law is the equation:

Flix = mmf

Reluctance (Equation 2.4)

Here, "Reluctance” is magnetic impedance. Reluctance of non-magnetic materials is close
to that of a vacuum and reluctance of paths through linear ferromagnetic materials is less
than through the air. Hence (by Equation 2.4) the flux will be greater through a
ferromagnetic material than in free space.

2.2 Loops

If the wire carrying the current is shaped into a closed loop, then "mmf" shown as magnetic
lines are as shown in Figure 2.1.
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Figure 2.1.
Magnetic field lines
surrounding loop current. B-C loop wire



Note, by the corkscrew rule, the fields from each conductor add inside the loop, i.e. between
B and C, because the mmf lines point in the same direction. In contrast, the fields outside
the loop, i.e., between A(= -o) and B and also between C and D(= + ) are the difference
between the fields of the two conductors forming the loop. This is the reason why the
magnetic fields are stronger inside the loops and fall off rapidly outside (in the plane) of the
loop.

2.3 Objects Near Loops

A conductor in a time-changing magnetic field will have an electromotive force (emf) induced
in it. The change in the magnetic field may be caused by:

1.  The motion of the conductor in a magnetic field. The field itself may be space- or
time-invariant or both, or

2. A time-varying magnetic field even if the conductor is stationary.

Effect in (1) may be called "motional" emf and the effect in (2) the "transformer" emf.
Thus, in general, the total emf on a conducting object near a loop is:

E = [—%%] Time varying field + [—%} Motion in the field

(Equation 2.5)
where: ¢ is the total flux intercepted by the object (Equation 2.3).

This emf (Equation 2.5) causes currents to flow through the conductor. The magnitude of
the currents depends on the time rate of change of flux through the object, its conductivity
and geometry.

The total flux through an object depends on its:

1. Size,

2.  Material,

3.  Flux density at the object.

In Equation 2.5, the first term is a function of the time-rate of flux change. If the time

variation is sinusoidal, then this term is proportional to the frequency of the magnetic field,
i.e. the loop-excitation current.
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The second term in Equation 2.5 depends on the speed at which the object moves across the
field to cause the change in flux with time. The resultant currents in the conductor depend
on its geometry and material. The important parameters in the induction of currents in
conducting objects in a magnetic field are:

1.  Flux density at the object,

2. Relative size of the object and its aspect, relative to the field and its geometry,
3.  Frequency of operation,

4.  Rate and direction of motion of the object relative to the magnetic field.

2.4 Loops

2.4.1 Self Inductance
A parameter which is a function of a loop’s geometry is the loop "self inductance”, "L",
defined as:

Total Flux Through Loop
Current in the Loop Wire

L =

(Equation 2.6)

2.4.2 Conductor Near a Loop

A conducting object near a loop will have circulating or eddy currents induced on it if there
is a relative motion between the object and the field or because of the alternative nature of
the loop excitation (or both) (Equation 2.5). The induced currents have magnetic fields
associated with them. These fields react with the original loop fields.

Conductive objects tend to reduce the total flux through the loop. Equation 2.6 shows that
this reduction will result in a decrease in the self-inductance, "L", of the loop relative to its
free space value.

2.4.3 Ferromagnetic Materials

When magnetising materials, such as iron or steel, are introduced near a loop, the reluctance
(Equation 2.4) of the magnetic circuit decreases. This causes an increase in the total flux
through the loop, relative to its free-space value. From Equation 2.6, this will result in an
increase in the loop self inductance.

Note that the overall effect on flux through the loop, and therefore on the loop inductance

caused by an object, depends on its geometry and the relative contributions of the conductor
(or eddy) currents and of its magnetic (reluctance) properties.

11



244 Loop Sensitivity
If the initial value of the loop self inductance is "Lo" and its self inductance with an object
present is "L", then the loop "sensitivity" is defined as:
L-L AL
Loop sensitivity = ° =
P Ly T T

[ o

(Equation 2.7)

where "AL= L - L," is the change in loop self inductance caused by the presence of the
object.

Note that since the loop sensitivity to an object’s presence depends on the relative amount of
the flux that the object intercepts, it follows that the locations of high flux densities will be
high sensitivity areas. This is because an object of a given size will intercept a
proportionately greater amount of total flux in a high flux density location than in a low
density one.

Such reasoning leads to investigating the effects of an object in the form of a flat conducting
slab, i.e.:

"Given the height and the size of the object or slab above a loop, is there a loop size
that maximises the flux density at the height of interest?"

If such an optimum loop size does exist, this will provide maximum sensitivity for the objects
at the height of interest.

In Section 4, the distribution of the (vertical) magnetic flux density in single loops is
investigated theoretically. This flux density is normal to the loop plane and to the assumed
object’s surface.

The above assumption implies that the effect of the motor vehicles (cars, vans and trucks)
may be modelled by a plane conducting slab and experiments have established its validity.

2.5 Analysis

For simplicity, the study of the flux density distribution is confined to the vertical component
of the magnetic flux density through the centroid of rectangular and circular loops.

12



The vertical component of the magnetic flux density at a height "z" metres above a single-
turn circular loop of diameter "a" metres, is given (Popovic 1971) as:

I 2
B, = Lol I o
2’7[' (612 + z2)3/2
(Equation 2.8%)

The vertical flux density at a height "z" metres above a rectangular loop of "2a" metres by
"2b" metres dimensions is:

I
B, - s 2ab [ L, 1 ] tesla
47[' (a2 + b2 ¥ Z2)1/2 a2+z2 b2 + z2

(Equation 2.9)

"B," is measured along a line perpendicular to the centroid of the loop.

From Equation 2.9, the corresponding (i.e. along the centroid) flux density at a height "z"
above a square loop with side dimensions "2a" metres is:

1 2
B = ladl 4a tesla
z 4,”- (Zz +a2)(2a2 ¥ 22)1/2
(Equation 2.10)

Equations 2.8 and 2.10 tend to zero for a-0 and a—>co. Thus, stationary points are expected
in the range 0<a< co.

Circular loop: For a given current and number of turns the maximum axial magnetic flux
density at a height "z," occurs when the radius "a" of the loop is:

a, =2 1,

a, and z, are in the same units (metres)

(Equation 2.11)

IT = tesla, SI unit of magnetic flux density (1 weber magnetic flux/m?)
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Rectangular loop: From Equation 2.10 for a given current "I", the vertical flux density at
a height "z," on a line through the centroid of a square loop of "2a x 2a" dimensions is
maximum when "a= a," where:

(Equation 2.12)

2.6 Results

Graphs showing the variation of the vertical flux with height above loops are given in Figures
2.2 to0 2.7. The height is measured along a perpendicular through the centroid of the loop.
Note that the vertical co-ordinate in all graphs is the vertical magnetic flux density
component. All co-ordinates are drawn with the same vertical scale.

Results in Figures 2.2 to 2.4 indicate that high flux densities are achieved at low heights, i.e.
close to the loop surface, for narrow rectangular loops (Figure 2.3). However, for narrow

loops, the flux density drops off with height more rapidly than for wider loops.

Figures 2.5 to 2.7 show the flux density at a few selected heights. The results indicate that
optimum loop dimensions exist for each height.

From these analytical results the conclusion is that when loops are used to detect objects at
a number of different heights, e.g. cars and trucks, then either

1. a compromise rectangular loop must be used, or

2. a number of loops be used, optimised for a number of the most commonly occurring
vehicle-chassis heights.

14



Relative Vertical Magnetic Flux Density ——we

1m loop side length

Figure 2.2.

Relative Vertical Magnetic Flux Density —s

Height Above Loop (metres)

Square loops: vertical magnetic flux density along the normal to the loop plane
at the loop centroid. The parameter is the length of the loop side at 1, 2, 3
and 4 metres.

im loop side length

Figure 2.3.

1 2 3

Height Above Loop (metres)

Rectangular loops: vertical magnetic flux density along the normal to the loop
plane at the loop centroid. Two sides of the loop are fixed at 1m length, the
parameter is the length of the other two sides which are variable at 1, 2, 3 and
4 metres.
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Relative Vertical Magnetic Flux Density —en—

im loop side length

Figure 2.4.

Relative Vertical Magnetic Flux Density —=—

T n ' |
1 - 2 3
Height Above Loop (metres)
Rectangular loops: vertical magnetic flux density along the normal to the loop
plane at the loop centroid. Two opposite sides of the loop are fixed at 2m
length, the parameter is the length of the other two sides which are variable
at 1, 2, 3 and 4 metres.

Z = 0.1m height above loop plane

Figure 2.5.

Loop Side Length (metres)

Square loops: vertical magnetic flux density along the centroid of the loop as
function of loop (square) side length. The parameter is the height "z" above
the loop, with z = 0.1, 0.4, 0.7 and 1.0 metres.
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Relative Vertical Magnetic Flux Density ——e—
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0 1 2 3 4
Loop Side Length (metres)

Figure 2.6. Rectangular loops: vertical magnetic flux density along the centroid of the
loop as function of loop side length. Two opposite sides of the loop are fixed
at 1m length, the other two sides are variable. The parameter is the height
"z" above the loop plane, with z = 0.1, 0.4, 0.7 and 1.0 metres.
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Figure 2.7. Rectangular loops: vertical magnetic flux density along the centroid of the

loop as function of loop side length. Two opposite sides of the loop are fixed
at 2m length, the other two sides are variable. The parameter is the height
"z" above the loop plane, with z = 0.1, 0.4, 0.7 and 1.0 metres.
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3. A MATHEMATICAL MODEL & RESULTANT SPATIAL DISTRIBUTION OF
MAGNETIC FLUX DENSITY OF VARIOUS LOOPS

3.1 Introduction

Road loops are widely used for traffic management. They are a link in the monitoring system
and any increased understanding of their characteristics may help improve the overall system
performance. In Sections 3.2 and 3.3, mathematical models of two types of loops are
formulated and used to study the magnetic flux density distributions in space. The
formulation is based on the assumptions that the currents are concentrated in thin,
"mathematical” lines.

3.1.1 Rectangular Loops

These loops are considered, assuming free space conditions and no current interaction (i.e.
line current assumption) among the various elements of the loop. Magnetic vector potentials,
caused by currents, are derived and the magnetic flux densities are then determined by the
"curl" vector operation. Separate expressions for the vertical and horizontal (relative to the
loop plane) magnetic flux densities are derived. These expressions are used to compute the
flux components shown in various figures.

3.1.2 Quadrupole Loops

A similar procedure is followed to obtain the fields of quadrupole loops. Finally, and most
importantly, a composite graph of vertical and horizontal(*) (or cross-) field densities is
computed and compared with the observed loop sensitivity data for a quadrupole loop.

3.2 Mathematical Formulation

3.2.1 Magnetic Vectors

The magnetic flux density caused by loop currents is determined first by finding the magnetic
vector potentials of the currents. The magnetic flux density, B (a vector quantity), is related
to the magnetic vector potential by:

B-VxA=-CURLA

(Equation 3.1)

? "Horizontal" flux density refers to flux density directed parallel to the loop plane.
"Cross-field" flux density is also horizontal but is specifically directed across and not
along the road lane.
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This procedure simplifies the work considerably. The vector magnetic field caused by a
current of I ampere in a filamental conductor in the direction "ds™ is given by:

i (&
4 j 7 (Equation 3.2)

where p is a material constant; for free space, p = p, = 47 x 107 henry. m, and
1 is the distance from d s to the field point. Equations 3.1 and 3.2 and the operations they
define are explained in Langmuir (1961, p. 72).

3.2.2 Rectangular Loops

Figure 3.1 shows the geometry of a loop. The traffic flow is in the x - direction and the y-z
plane is the midsection of the loop at x = 0. For a rectangular loop, the current flow is in
directions ABFCDEA. (For the quadrupole case the currents flow in a "figure of 8" form
along ABFEDCFEA.) Note that the currents are reversed for quadrupole and rectangular
loops in section DC. The current in the middle conductor EF (of the quadrupole) is twice
that of the side conductors BA and CD. With the current of magnitude I ampere and in
directions shown, the magnetic vector potential component "Ax" at the field point "f(x,y,z)"
is found from:

—-X0 r

+

4

A4, - M [ [’“’ @l I"“’ dx’ ] (Equation 3.3)

X0 14

g \_
Midsection of Loop

Figure 3.1. Geometry of a loop. All angles are 90°. Loop ABCDA is a rectangular loop
if sides AB = CD # BC = DA. If AB = CD = BC = DA, the loop is a
square. If the loop includes the side EF, then loop ABFEDCFEA is a
quadrupole. It can be a square or a rectangular quadrupole.
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A similar integral expression may be written for the y-directed magnetic vector component.

Using the components "A," and "A," of the magnetic vector, the magnetic flux density vector
can be determined from Equation 3.1:

—

A=-efd, +eyA

(Equation 3.4)

where "8x" and "8y" are unit vectors in x- and y- directions respectively, and the component
"A," is zero since there is no z-directed current. Equation 3.4 gives the resultant magnetic
vector of a loop in free space.

3.2.3 Quadrupole Loops

A quadrupole loop is, effectively, made up of two rectangular loops wound in opposite
directions so that the currents, in the sides that coincide (EF) to form the quadrupole loop,
flow in the same direction. Thus the current in the middle conductor is twice that of the

outside conductors. This explains the skewed vertical magnetic field observed in Figures 3.5
and 3.6.

This type of loop is called a quadrupole because a single loop produces a dipole type of
magnetic field, while the two equivalent loops in quadrupole loops give rise to a resultant
field of two dipoles.

3.3 Computational Results

Numerical results were obtained for rectangular and quadrupole loops using Equation 3.1 and
the appropriate magnetic vector components. Vertical and horizontal (transverse to the lane,
i.e. in the y-z plane) magnetic flux densities were computed for single turn loops.

Figures 3.2 to 3.4 are for a 2m x 2m rectangular (square) loop. Graphs in Figures 3.2 and
3.3 show spatial distributions of vertical magnetic flux densities at heights 0.25m and 0.50m,
respectively. A 2m x 2m square loop is optimum for detecting horizontal (conducting) slabs
at a height of 0.786m. Figure 3.4 gives the horizontal (transverse) flux density at 0.40m
above the loop plane.

Graphs in Figures 3.5 to 3.7 are for a 2m x 2m quadrupole. Figures 3.5 and 3.6 give the
vertical flux densities above the loop at heights of 0.20m and 0.50m above it. Figure 3.7
depicts the spatial horizontal distribution of flux density for the quadrupole.

Graphs in Figures 3.8 to 3.11 show flux density profiles at midsections (x = 0, Figure 3.1)
of rectangular and quadrupole loops. Figure 3.12a is a composite; it depicts both vertical
and horizontal flux density profiles through the midsection of a quadrupole. The heights at
which the fields were computed for this graph, were chosen so that each corresponds to the
"mean" height for a particular type of vehicle. This was to allow comparison with observed
sensitivity results for a similar type of loop (quadrupole) (Figure 3.13) (Morris et al. 1978).

20



To find representative heights of various types of vehicles, measurements were made of
chassis heights of cars, motorcycles and trucks. Typically, the chassis of a private car above
the road surface was in the range 0.20m to 0.30m. The corresponding height for a range of
trucks was about 0.85m. Because of their construction it is considered that a horizontal
conducting slab at the appropriate heights may be used to model the cars and trucks.

Because of their construction, motorcycles may be considered as vertical conducting slabs.
Measurements on a representative selection of motorcycles gave, as their centroid, a height
of about 0.40m above the road surface.

Thus, the composite flux density graph (Figure 3.12a) has two vertical flux density plots at
0.25m (for cars) and at 0.85m (for trucks) and the horizontal (cross) field is computed at a
height of 0.40m (for motorcycles).

In Figures 3.14 and 3.15 the widths (across the road lane) of the quadrupole loop were kept
constant at 2m and the length was varied from 0.5m to 3m. The resultant vertical magnetic
flux density profiles at 0.40m above the loop are plotted in Figure 3.14. This shows that
there is little increase in the field after the quadrupole becomes more than two juxtaposed
squares of Im x 1m. Thus for a width of "2B" metres, the length of the quadrupole loop
need not exceed "B" metres.

When the cross-lane field is considered (Figure 3.15), a loop of 2m width (across lane) the
cross-field increases with loop length but the rate of flux increase drops off rapidly past the
loop length of 1m. As for the case of the vertical flux (Figure 3.14), the optimum size of
a quadrupole loop is 2m x Im. For a loop length greater than 1.75m, no perceptible increase
in cross-field was noted. Thus the optimum size for car and motorcycle detection is a loop
of 2m x 1.75m.

3.4 Summary

Even though Figure 3.13 is a linear-log plot, the similarities between the flux density curves
of Figure 3.12a and the corresponding experimental sensitivities (Figure 3.13) for the various
types of vehicles are striking. A linear-log version (Figure 3.12a) has been made of Figure
3.12a to show the close similarities between flux densitiy curves and experimental sensitivities
(Figure 3.13). The positions of maximum flux densities and maximum sensitivities are on
the linear axes and thus not affected by the transformations.

Clearly a strong cross-field magnetic flux density at a height of about 0.40m right across each
of the road lanes is essential if motorcycles are to be detected with any reasonable certainty.
In comparing the curves in Figures 3.12a and 3.12b with Figure 3.13, note that the sensitivity
curves (Figure 3.13) tend to be smoothed-out versions of the flux density curves because the
finite width of the vehicles gives a running average of the flux density curve. This result
gives confidence to use loop models in the development of loop configurations to match the
expected traffic. It becomes apparent now that quadrupole loops provide a cross-field
structure more suitable for motorcycle traffic than do the square loops.
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A possible solution for detecting cars, trucks and motorcycles may be provided by
combinations of a square loop and a quadrupole loop. The two could be staggered to provide
an almost continuous cross-field in each lane. The dimensions of the square loop would be
optimised to detect trucks and the quadrupole loops would be optimised to detect cars. The
combination of the two would provide the required cross-field to detect motorcycles. Thus
2m x 2m square loop combined with a 2m x 1.75m quadrupole with the two staggered in-lane
by 0.50m (relative to each other) would provide vertical fields to detect vehicles in (chassis)
height range from 0.25m to 0.85m and a resultant relatively continuous cross-field to detect
motorcycles.
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Figure 3.2. Amplitude distribution, depicted graphically, of the vertical magnetic flux
density over the square loop at height 0.25m above the loop plane, as in a
road. Heights of curves indicate relative flux density above road lanes.
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Figure 3.3. Amplitude distribution, depicted graphically, of the vertical magnetic flux
density over the square loop of Figure 3.2, at height 0.50m above the loop
plane, as in a road. Heights of curves indicate relative flux density above
road lanes.
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Figure 3.4. Amplitude distribution, depicted graphically, of the cross(-lane) magnetic flux
density over the square loop of Figure 3.2, at a height 0.40m above the loop
plane, as in a road. Heights of curves indicate relative flux density above

road lanes.
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Figure 3.5. | Quadrupole loop, 2x2m. Vertical magnetic flux density distribution, depicted
graphically, over the loop at a height 0.20m above the loop plane, as in a
road. Heights of curves indicate relative flux density above road lanes.
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Quadrupole loop, 2x2m. Vertical magnetic flux density distribution, depicted
graphically, over the loop at a height 0.50m above the loop plane, as in a
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Figure 3.8.  Square loop, 2x2m. Vertical magnetic flux density profiles through the mid-
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section of the loop at heights z = 0.20m, 0.50m and 0.80m above the loop
plane. Heights of curves indicate relative flux density at a particular value of
"z" above the loop. Circles denote the loop conductors along the road lane.
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Figure 3.9.  Square loop, 2x2m. Cross(-lane) magnetic flux density profiles through the

mid-section of the loop at heights z = 0.20m, 0.50m and 0.80m above the
loop plane. Heights of curves indicate relative flux density at a particular
value of "z" above the loop. Circles denote the loop conductors along the
road lane. '
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Figure 3.10. Quadrupole loop, 2x2m. Vertical magnetic flux density profiles through the
mid-section of the loop at heights z = 0.20m, 0.50m and 0.80m above the
loop plane. Heights of curves indicate relative flux density at a particular
value of "z" above the loop. Circles denote loop wire sections.
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Figure 3.11. Quadrupole loop, 2x2m. Cross(-lane) magnetic flux density profiles through
the mid-section of the loop at heights z = 0.30m, 0.60m and 0.90m above the
loop plane. Heights of curves indicate relative flux density at a particular
value of "z" above the loop. Circles denote loop wire sections.
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Figure 3.12a. Quadrupole loop, 2x2m. Combination plots of vertical and cross(-lane)
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magnetic flux density profiles at heights shown, at mid-section of loop.
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Figure 3.12b. Log-linear plot of Figure 3.12a for comparison with Figure 3.13.

Vertical magnetic flux density profiles through the mid-section of
quadrupole loop 2x2m, at heights z = 0.25m and 0.85m. Cross(-lane)
magnetic flux density profile at height z = 0.40m, at mid-section of
loop.
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Sensitivity curves obtained by Morris et al. (1978) for a quadrupole loop.
Only half the profile is shown. The sensitivity curves for car and truck
correspond to the vertical magnetic flux density profiles at heights z = 0.25m
and 0.85m, respectively, of Figures 3.12a and 3.12b. The motorcycle
sensitivity curve corresponds to the cross(-lane) magnetic flux density profiles
at height z = 0.40m of Figures 3.12a and 3.12b.
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of the loop. Loop width is constant at 2m across the lane. Parameter is the
loop length along the lane from 0.50m to 3.00m, in steps of 0.50m.
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Figure 3.15. Quadrupole loop. Cross(-lane) magnetic flux density profiles at the mid-

section of the loop. Loop width is constant at 2m across the lane. Parameter
is the loop length along the lane from 0.50m to 3.00m, in steps of 0.50m.
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4. FEEDERS OR TRANSMISSION LINES

4.1 Feeders

A feeder or transmission line is used to connect a road loop to the electronic detector. These
lines have many forms and dimensions, depending on the particular application. The
"transmission line" effects on the operation of a loop become significant in some cases where
the line is relatively long and/or the frequency of operation is high. To understand the effects
of lines on system operation their relevant properties have been investigated.

4.2 Fundamental Concepts

In an electrically long line, waves will be propagating from the generator to the load (loop)
end and, in general, waves reflected from the load end (loop) will be travelling toward the
generator (electronic detector) end. Depending on the line length and the frequency of
operation, these waves will tend to add to or (partially) cancel each other.

For a single frequency operation, as in loop detectors, the ratio of the voltage to current
waves travelling in the same direction is constant for a uniform line. This ratio is defined
as the "characteristic" impedance of the line.

At any point in a line there will be incident and reflected waves. The ratio of the total
voltage to the total current is defined as the "input" impedance of the line at the point. Since
the relative phases of the incident and reflected waves vary from point to point, the input
impedance to a line will also vary. This is the "impedance transformation property" of the
line. If the line is terminated in its correct (characteristic) impedance there will be no
reflected waves and thus, a correctly-terminated ("matched") line will show no impedance
transformation. Useful lines tend to gave real characteristic impedances (purely resistive).
However, when reactive terminations or loads, such as road loops, to a line are used,
impedance transformation effects will always be present.

4.3 Characteristic Impedance

The characteristic impedance of a line is determined by its construction, i.e. by the line cross-
section and the dielectric material that acts as conductor spacer and insulation. Sometimes
the conductors are surrounded by a flexible conducting outer shield. The shield is used to
reduce unwanted interference signals from the outside world. An example of a commonly
used feeder cable is shown in Figure 4.1.
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~— Conductors

Shield

Figure 4.1. Shielded or screened twin conductor line.

An approximate expression for the characteristic impedance of the line is given by Equation
4.1 (ITT Handbook 1977): (Equation 4.1)

Z = 273 log,, (2 v[(1-e®/(1 + )] ) ohms

o

€,

where = h/d, 0 = h/Dand D> >h, h>>d
€, is the relative dielectric constant of the interconductor medium.
4.4 Impedance Transformation in a Feeder

Consider a transmission line of characteristic impedance "Z," ohms, length "{" metres and
terminated in a load of "Z;" ohms (Figure 4.2).

Figure 4.2. Transmission line of characteristic impedance "Z," ohms, length "£" metres
, terminated in a load of "Z " ohms.
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At a frequency of f Hz, the impedance seen at input A of this line may be shown to be
(Chipman 1968):

7 - Z, cosh(yf) + Z  sinh(yf)
" ° Z cosh(yt) + Z, sinh(y{)

(Equation 4.2)

where Yy =a+jB is the "propagation” constant of the line. It is determined by the
physical properties of the line, where "j = |-1".

o = "attenuation" constant of the line in Nepers/metre. "of" is the

attenuation in h[ne of 1ength "{" metres long,
i.e. of = log, | V,/V,.

"V;" is the voltage at a point in line, say, point "A". "V," is
the voltage at distance "{" metres from "A", in the direction of

wave propagation.

B = "phase" constant of the line.

44

"electrical” length in radians/metre, of the line of length
"f"metres, and "(B" is the phase constant.

In a lossless line, o = O:

(Equation 4.3)
It may be shown that:

27

Y.
vVoX

_ 21f_
g =Y~
p

&

(Bquation 4.4)
where V, = AJfis "phase" velocity of waves in line, and A, = "guide" wavelength at

the frequency of fHz. Note that for same frequency, the free space and guide
wavelengths are not, usually, the same.
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"Free space" wavelength "A" is defined from free space velocity of electromagnetic waves,

wo. "

c", i.e.:

y o€ _ 3x10°

f f

metres

Equation 4.2 for the lossless case becomes:

Z, cos(BL) + jZ sin(Bf)
"o Z cos(BL) + jZ, sin(BL)

(Equation 4.5)

Note: If Z, = Z,, i.e. the line is "correctly" terminated, then for any length "{", Equation
4.5 becomes:

Z,=2 (forZ, = Z)

(Equation 4.6)

Thus, if the loop impedance is equal to the characteristic impedance of the line, then the
feeder does not degrade the loop effectiveness. However if, as is normally the case, the
magnitude of the loop impedance (a pure reactance) is not equal to the characteristic
impedance of the line (usually purely real’), then Equation 4.5 shows that impedance
transformation takes place along the line. Thus input impedance in the line depends on the
line length. This transformation has a graphical solution, the so-called "Smith chart". For
details see any book on Transmission Line Theory, e.g. Chipman (1968).

From Equation 4.5 the important parameters in the transformation are:

Z, — the line characteristic impedance, usually purely resistive,
g€ —  the electrical length of the line in radians.
Since
pi- 2
VI’

the electrical length depends on:

1.  The physical length of the line, "£" metres.

2. The velocity of the electromagnetic wave in the line, "V," metres per second.
3.  The frequency of operation, "f" hertz.

( I See Appendix.
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NB: While the frequency of operation may be variable, note that the characteristic
impedance of a line is determined at the manufacturing stage and that the available
range of values for characteristic impedances is pre-determined and limited.

Representative values for characteristic impedance of feeders in use, at present, with road
loops are:

65 ohms
80 ohms

Screened Twin Stereo 0.75mm? cable Z,
Screened Twin Stereo 0.25mm? cable Z,

R
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5. THE LOOP-FEEDER SYSTEM

5.1 Introduction

To determine the effect of feeder on the loop-feeder combination, a "sensitivity" factor is
defined. This quantity is equal to the relative change in impedance at the input to the feeder
(the detector end) divided by the relative change in impedance or inductance at the loop.
Thus the sensitivity factor (SF) is a measure of change in system sensitivity caused by the
feeder. It is important that, when analysing the effect of feeder, the impedance changes at
the loop and at the input to the electronic detector are investigated because a given change
in loop inductance caused by a passing vehicle will be transformed by the feeder. In general,
the value observed at the detector end will be different from the actual change that may be
observed at the loop itself.

The observed value depends on:

1.  Line characteristic impedance, "Zo" ohms,
2.  Electrical length of the line, "3{" radians,
3.  Loop reactance, "X;".

The undisturbed reactance of the loop is given by:

XL = 2 W.ﬂ‘o
where T = 3.14159,
f = frequency of operation in hertz (Hz),
L, = undisturbed loop inductance in henrys (H).

5.2 Sensitivity Factor

For an impedance change at load, "AZ, ., the corresponding change in impedance at input to
the line, "AZ,", may be written as:
dzin

dz,

AZ,

AZin =

(Equation 5.1)
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Sensitivity or relative change at input to line can be written:

TS A‘Zn dZin AZL
Sensitivity = = .
Zin dZL Zin
dZin/ Zin AZL
az,jz, | = z,
(Equation 5.2)
Re-writing Equation 5.2 as:
. AZ, AZ,
Sensitivity = ——~ = SF . _Z
Zin ZL
(Equation 5.3)
where Sensitivity Factor is defined as:
_ [dZm/Zm]
dzZ,/1Z,
(Equation. 5.4)
From Equations 4.2, 5.1 and 5.2:
- ZZ (1 - tanh’(yf) }
[Z, + Z, tanh(y£)][Z, + Z, tanh(y£)]

_ R[1 - tanh*(y{)] '
[R + tanh(y£)] [1 + Rtanh('yf)]‘

(Equation 5.5)
where R = Z /Z,.
For a loop having an inductance of "L" henrys:

zZ, = joL

J2wfL ohms
JXy

All these forms are used in various parts of the analysis.
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5.3 Lossless Case

For a lossless (or a very low loss) line:
if « = 0, then v = jB

Hence, Equation 5.5 for sensitivity factor becomes:
since tanh(j3t) = j tan (5{)

ZX, (1 + tan’(B0))

SF =
[Z, - X, tan(B0)] [X, +Z tan(Bf)]

(Equation 5.6)

Here using Z, = jX, "reactance" of loop

= Jj2=f),
Equation 5.6 may be written, for ease of computation:

X,J/Z) . (1 + T

SF =
X X
1-L .71l +T
Z, Z,

(Equation 5.7)
with T = tan(Bi).

Equation 5.7 represents the effect of the feeder on the sensitivity of the loop. It is important
to note that this is an idealised case as lossy lines in vehicle detection systems will cause a
loss of sensitivity and the correct expression of Equation 5.5 must be used.

When X, anBt) = 1,
Z, (Equation 5.8a)

Equation 5.7 shows that

SF — oo, i.e. in an ideal case, sensitivity tends to infinity.
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This condition may be re-written as:

(Equation 5.8b)

Sensitivity factors greater than unity indicate that a lossless transmission line may actually
increase system sensitivity for appropriate frequency, inductance value of loop, "Z," of line,
and electrical length of line. This last parameter, the electrical length, is given by:

Be - n fU 21r—(£)~
v, Ag

radians

is a function of the physical length "{¢", the frequency of operation "f", and the phase velocity
of wave in the line "V,".

Equation 5.7 is plotted for various values of the ratio "X;/Z," against the electrical length of
the feeder (Figure 5.1). Notice that for X;/Z, = 1, SF = 1 for most of the plot.

Thus, the loop inductance, the frequency of operation and the characteristic impedance of the
line should be such that the relation:

2af L = Z,

(Equation 5.9)

is satisfied. This condition makes sensitivity relatively independent of the line length, and
close to the loop’s own sensitivity, i.e. sensitivity loss is minimal (Anderson 1970).

Note that high characteristic impedance cable, such as 0.25mm? screened twin stereo cable,
when combined with low inductance loops and low frequency of operation so that
X /Z,< <1, will result in a serious loss of system sensitivity.

5.4 Theoretical Results

Computed graphs, for which various parameters were kept constant, are shown in Figures 5.2
to 5.6. For detailed explanations see individual figures.
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Relative Sensitivity of
Loop-Feeder Combination

Figure 5.1.

Sensitivity Factor

X /2o=150 . o
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Electrical Length of Line (Radians)

Theoretical relative loop sensitivity or response of loop-feeder systems as
function of the electrical length of feeder line for lossless line case. The
parameter is the ratio of loop reactance "X, " to the characteristic impedance
of feeder line "Z,".

100m line length (metres)

Figure 5.2.

i i 1 I
50 100 150 200 - 250

Feeder Line Characteristic Impedance, Zg(ohms)

Quadrupole loop. Loop sensitivity change as function of the feeder line
characteristic impedance. The loop inductance is 138uH and the operating
frequency is 60kHz. The parameter is the line length at 50m, 100m, 150m
and 200m.
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Figure 5.3. Quadrupole  loop. Loop sensitivity change as function of the feeder line
characteristic impedance. The loop inductance is 138uH and the operating
frequency is 30kHz. The parameter is the line length at 50m, 100m, 150m
and 200m.
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Figure 5.4. Theoretical curves of the loop sensitivity change as function of the feeder line

characteristic impedance. The loop inductance is 1004H and the feeder line
is 150m long. The parameter is the operating frequency at 30, 60, 90 and
120kHz.
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Figure 5.5. Theoretical curves of the loop sensitivity change as function of the feeder line
characteristic impedance. The loop inductance is 135uH and the feeder line
is 150m long. The parameter is the operating frequency at 30, 60, 90 and
120kHz.
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Figure 5.6.  Theoretical curves of the loop sensitivity change as function of the feeder

length. The loop inductance is 138uH and the line characteristic impedance
is 82+jo ohms. The parameter is the operating frequency at 30, 60, 90 and

120kHz.
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6. LOOPS OVER METALLIC SCREENS

6.1 Introduction

Road loops used in traffic control mechanisms normally operate in the range of 10kHz to
100kHz. The current flowing in a loop conductor generates a magnetic field in its
neighbourhood. The field’s spatial distribution depends on the loop geometry, the number
of turns and the current through the conductors. Conducting and ferromagnetic objects
located within the loop’s magnetic field tend to modify the original field.  The interaction
between a loop and an object is the more pronounced the closer the object is to the loop and
it also depends on the relative loop-object orientations. This "closeness" is a function of the
loop dimensions and of the operating frequency, i.e. nearness is determined relative to a
characteristic dimension of the loop and the wavelength of the operation.

Note that, if as is the case for traffic control use, the wavelength is large relative to the loop
dimensions and to the loop-object separation, then the separation relative to a characteristic
dimension of the loop is the most important parameter. This fact has been observed in
measurements with various-sized and variously shaped loops.

Since the loop is excited by alternating currents, the screen-loop interaction may be caused
by:

1. Eddy Currents. When vehicles pass above the loop, the time-varying magnetic fields
created by the loop excitation induce currents in the screen. Those currents, in turn,
produce a secondary or their own magnetic field that interacts with the magnetic field
of the loop. Induced currents cause a decrease in flux through the loop.

2.  Reluctance Change. Ferromagnetic materials decrease the overall reluctance (magnetic
impedance) of the magnetic path and, as a result, cause an increase in the flux through
the loop.

Note that materials such as steel will produce both of the above effects in varying degrees.
The dominant effect depends on the shape of the object and its aspect relative to the magnetic
lines of force.

To establish the validity of the model approach, a theoretical study was made of loops placed
above a conducting halfspace. The analytical results were approximated from the exact
formulation for the case of a circular loop over a conducting halfspace.

The experimental results were obtained from measurements on circular loops placed over
finite slabs. Since the skin(*) depths at the measuring frequencies were much less than the
slab thickness, the actual slab thickness was not considered to be of critical importance.

C % Skin or penetration depth is the distance in a medium over which the field
attenuates to "e?", where "e" is the base to the Napierian logarithms.
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Note also that the effects of the finite size of screens were not taken into account in the
analysis. However, the experimental results indicated that, as long as the diameter of the
loop and the loop-screen separation were much less than the dimensions of the screen, the
screen may be considered infinite.

6.2 Analysis

For a circular loop of diameter "2a" metres, whose plane is parallel to a conducting halfspace
at a distance "b" metres, the expression for the normal flux density in air is approximated
from Equation 1 (Tegopoulos and Kriezis 1985):

Lo - - - _
B, (1, 2) = %J [GXP ( C]jb)] LU@L,[%} [exp [ k(z b)} - exp [k(z b)]kdk]

o a a

(Equation 6.1)
J, = Bessel function of the first kind and order "n".

The z-axis of the cylindrical co-ordinate system passes through the centre of the loop and the
conducting halfspace is at "z=a", the plane of the loop is at "z=0".

The flux density through the loop, B,(r,0) is then:

I
B(r, 0) = 22

o kr pd e kr (-2kb)
jo J,(®) JO[_a_] kdk - - jo J,(®) Jo[_g] [exp - ] kdk

(Equation 6.2)

Thus the flux density through the loop is made up of a term related to the loop itself and an
additional term related to currents in the slab.

To find the inductance of the loop, first the flux density over the area of the loop needs to
be integrated. Finally, use the formula to obtain "L", i.e.

¢ = LI

(Equation 6.3)
where ®  is the total normal flux through the loop,
is the current through the loop wire,
L  is the self inductance of loop, a property of loop geometry and the
surroundings.

]
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Total flux "&®" is made up of two terms, since Equation 6.2 can be written:
Bz(l‘,O) = Bo(r,O) - AB(?’,O)
or:

® - [ BrOdA - [ Byr0dA - [ AB(0)d4,

~ and finally: ¢ =P,- AP

where @ = fA B,(r,0) dA and A = fA AB (r,0)dA

For the loop inductances in the presence of conducting halfspace, thus:

(Equation 6.4)

where "L," is the "free space" loop inductance,
and "AL" is the change in the free space inductance due to presence of the metal slab.

From the above, "L," and "AL" can now be written as:

a r=0

™, ) a kr
L, - J AGL [ J Jo[z] rdr] dk

(Equation 6.5)
and:

AL = o j“’ eH Jl(k)k“ ‘ Jo[_kr_]rdr] dk
k=0 r-0 a

(Equation 6.6)
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- Performing the integrations (Sneddon 1956) inside the parentheses and re-arranging terms:

L o5
° - fo JAK) dk

T UG

These expressions are evaluated (Sneddon 1956, Dwight 1957) as elliptical integrals "E" and
"k" :

K(k) - E(k,)

(Equation 6.7)
and

Kk, - E(ky)

(Equation 6.8)

2
where k2 = 1 and k2 =
az + b?.

Numerical values may be obtained from Dwight (1957). From Equations 6.7 and 6.8,
"AL/L," can be plotted as function of "b/a" (Figure 6.1),
Since L,, =L,- AL, it follows that

Lo - leab = Lo - [Lo - AL]

= AL
Or AL_ - LD - leab
L, L,

i.e. as relative loop inductance change against the normalised loop-screen separation. This
plot indicates how the loop inductance changes from its free space value. Sensitivity of the
loop is the inverse of this function, i.e. the smaller the effect of screen on the loop
inductance, the more sensitive the loop is to objects (vehicles) in its field.
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Figure 6.1.  Change in the self-inductance of a circular loop above an aluminium slab as
a function of the loop-slab separation.
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7. CONCLUSIONS

The erratic behaviour of vehicle detection systems used at present in roads around New
Zealand may be attributed to environmental factors and to the inability of some of the existing
electronic detectors to compensate for these.

The strong correlation that has been established between the spatial sensitivity of a loop and
the magnetic flux density distribution about it, is used to determine the detection of objects
passing through their magnetic fields.

The sizes and dimension of loops required for optimal detection of vehicles depends on the
types of the vehicles. Thus, as the optimum sensitivity of a square loop is at a height of 0.35
times the length of its side, the optimum loop size must be changed to accommodate the
various effective heights of vehicles. For example, using the same loop sensitivity, a larger
loop is needed to detect trucks and other large vehicles which have chassis at approximately
0.85 metres above the loop plane (in the road). A car has a chassis at average height of 0.25
metres above the loop plane, and would be detected by a smaller loop. Car and truck chassis
are horizontal and are detected by the vertical magnetic flux density.

However, to detect bicycles and motorcycles, the problem is compounded by their vertical
frames and thus the horizontal magnetic flux density is now of importance. A loop is
required therefore that produces a field across the lanes with its optimum at an appropriate
vehicle height which, for the representative sample that was measured, is about 0.40 metres.

A compromise between the conflicting requirements for the detection of the various types of
vehicles is the quadrupole loop. The optimum dimensions for car and motorcycle detection
were found, from theoretical considerations, to be provided by a 2m by 1.75m quadrupole
loop. These same dimensions were determined experimentally by workers earlier (about
1978) at the New South Wales Department of Main Roads.

The effect of the feeder on the feeder-loop combination is denoted by the "sensitivity factor",
which is a measure of change of sensitivity caused by the feeder. In general, the value of
change observed at the detector end of the line will be different from the actual change that
may be observed at the loop itself. The sensitivity of the loop-feeder system will not be
adversely affected if the magnitude of the loop impedance (pure reactance) is equal to the
characteristic impedance of the feeder line. A lossless transmission line (an ideal case) may
appear to increase the system sensitivity under a certain set of parameters. However, in
practice, with real lines and especially when high impedance lines are combined with low
reactance loops (perhaps because low frequency of operation is to be used), the result will
be a serious loss of system sensitivity.
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- The interaction between a ferromagnetic or other conducting object and a loop’s magnetic
field is the more pronounced the closer the object is to the loop and also relates to its
geometry and relative aspect. The measure of "closeness" of an object to a loop depends on
the loop dimensions and the operating frequency. At the frequencies of detectors presently
used for traffic control, the wavelength is large relative to the typical loop dimension and to
the separation between the object and loop. Thus the object-loop separation or, in this case,
the height of the vehicle above the loop plane relative to loop size is the most important
parameter.

As the presence of conducting and ferromagnetic materials affect the loop sensitivity,
reinforcing rods in a road near the loops will, for example, reduce their sensitivity.

Objects made of ferromagnetic materials can increase or reduce the flux through a Ioop,
depending on their geometry and aspect relative to the loop. Thus some may be even
"invisible" to the system in appropriate conditions. Changing the content of vehicle
construction materials in the future will, no doubt, affect the types of sensors used.
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APPENDIX. REAL VERSUS IMAGINARY QUANTITIES AS RELATED TO
ALTERNATING CURRENT ANALYSIS

The idea of real and imaginary (or quadrature) entities is a mathematical one, and in electrical
engineering it arises from the alternating current technology.

The "phase” difference between the applied potential (voltage) and the resultant flowing
current may be expressed in an analytical form using the ideas of real and imaginary
quantities. This is directly applicable to sinusoidal signals.

The concept of "phase” may be explained as follows. When a sinusoidal voltage is applied
to an electrical component (such as a resistor, an inductor, a capacitor or combinations
thereof) then, in general, the peaks of the applied voltage "V", as observed on a monitor, will
not coincide with the corresponding, observed, current peak "I". This time difference
between the peaks of the two quantities, measured or expressed in electrical degrees or
radians is the phase difference between the voltage "V" and the current "I". The phase is
related to the time difference "dt" for a wave period "T" by the relation:

Phase difference = dt/T times 360 degrees.

The relation between the voltage and the current at a point in the circuit is given by the
generalised Ohm’s Law:

I=V/Z
where "Z" is defined as the impedance at the point.

To show, analytically, the phase difference between "V" and "I", the impedance is made
"complex", i.e. it is made up of real or in-phase component and of an imaginary or
quadrature component. Thus, if the voltage "V" and current "I" are in phase, then the
impedance is "purely real", i.e. it has no "imaginary" component. If the two quantities "V"
and "I" are 90 degrees out of phase, then the impedance is "purely imaginary" or "purely
reactive” and it has no real component.

In general, the phase difference between "V" and "I" is none of the above two extremes and

so the impedance is "complex" i.e. it has both "real" and "imaginary" parts. Note that an
ideal or lossless loop is a pure reactance or, equivalently, its impedance is purely imaginary.
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