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An important note for the reader 

The NZ Transport Agency is a Crown entity established under the Land Transport Management Act 

2003. The objective of the Agency is to undertake its functions in a way that contributes to an 

affordable, integrated, safe, responsive and sustainable land transport system. Each year, the NZ 

Transport Agency funds innovative and relevant research that contributes to this objective. 

The views expressed in research reports are the outcomes of the independent research, and should not 

be regarded as being the opinion or responsibility of the NZ Transport Agency. The material contained 

in the reports should not be construed in any way as policy adopted by the NZ Transport Agency or 

indeed any agency of the New Zealand Government. The reports may, however, be used by 

New Zealand Government agencies as a reference in the development of policy. 

While research reports are believed to be correct at the time of their preparation, the NZ Transport 

Agency, and agents involved in their preparation and publication, do not accept any liability for the use 

of the research. People using the research, whether directly or indirectly, should apply and rely on their 

own skill and judgement. They should not rely on the contents of the research reports in isolation from 

other sources of advice and information. If necessary, they should seek appropriate legal or other 

expert advice. 
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Executive summary 

Introduction  

Cycling is a sustainable mode of travel and an alternative to motor vehicle trips, particularly for shorter 

trips (less than 5km). Government transport strategies, including the New Zealand Transport Strategy 

and Getting there – on foot, by cycle, encourage the development of cycling and walking plans and 

infrastructure improvements that encourage more ‘active’ mode trips. While health and transport 

benefits are likely to result from promoting more cycling, the risk of having a crash while cycling is 

typically higher than while travelling as a driver or passenger in a motor vehicle. This is of concern to 

cyclists, potential cyclists and organisations involved in road safety. 

The challenge for transport engineers and planners is to create a transportation environment that is as 

safe as possible for cyclists. This can be achieved through a series of measures, including, where 

practical, reducing traffic volumes and speeds, building on-road cycle lanes and intersection facilities, 

and constructing of off-roadway cycle paths. The safety benefit of most of these measures has not, to 

date, been quantified in New Zealand. Internationally, the research is also limited, particular in terms of 

the direct relationship between crashes and various roadway features and traffic conditions. This study 

extends previous work on the relationship between crashes and volumes of cycles and motor vehicles 

to the development of crash prediction models for on-roadway cycle facilities at intersections and 

along road links. The effects of speed and off-roadway paths have been assessed based on overseas 

research.   

Historically, off-roadway paths and quiet streets were the primary components of most cycle networks. 

In many cities, including most of the large Australasian cities, the focus is still on getting cyclists off 

busy arterial routes and onto off-roadway paths and local low speed streets. However, the 

disadvantage to many cyclists of off-roadway paths and local roads is that they are often not as direct 

as arterial roads, which is likely to be less attractive to many ‘confident’ cyclists, given the longer travel 

times experienced by cyclists compared to motor vehicles. Issues also arise at each end of the cycle 

path, where cyclists normally have to use arterial routes to access their destinations. As cycling 

volumes grow, it will become increasingly more important to provide on-roadway facilities for cyclists. 

A key element of this study is to understand and quantify the safety effect of cycle lanes, car parking 

and other improvement measures, such as intersection treatments and flush medians, on cycle safety, 

particularly on higher volume routes. We appreciate that in many cities, this requires the reallocation of 

road space to cycle facilities, which may not be popular with some stakeholders.  In such discussions, 

the evidence of safety gains for such improvements is particularly important and is a key driver for this 

research project, which was undertaken in 2006.        
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On-roadway cycle safety (crash prediction models) 

Crash prediction models have been developed for on-roadway cycle lanes at intersections (traffic 

signals) and along mid-block road links using a sample of sites from Christchurch, Hamilton and 

Palmerston North. The study looked at ‘cycle v motor vehicle crashes’ and ‘all crashes’, and the 

relationship each type has with traffic volume, cycle volume and a number of roadway factors. The 

mid-block models were also separated into ‘turning (in and out of driveways and minor side-roads)’ 

crashes and ‘non-turning’ crashes. Table XS1 shows the models that were prepared and the key 

variables that feature in each model. 

Table XS1 Crash prediction models 

Crash type Equation (crashes per approach) Error 

structure 

GoFa 

Cyclist mid-block 

crashes 

16.025.0
0 05. CQ101A -2

UCMN 

MEDIANFLUSHL  45.0
 

63.0MEDIANFLUSH  

NBb  

k=1.7c 
0.05 

All mid-block crashes 

30.084.0
0 36. LQ102A -4

UAMN   

PARKINGNO _  

 25.0_ PARKINGNO  

NB  

k=1.4 
0.17 

Cyclist mid-block 

turning crashes 

  54.056.03
1 1037.1 LQAUAMN  

NFLUSHMEDIA  

48.0NFLUSHMEDIA  

NB 

k=1.3 
 

All mid-block turning 

crashes 

10.056.0
1 37. LQAUAMN  -3101  

NOPARKING , 

 25.0PARKINGNO  

NB  

k=0.8 
0.09 

Cyclist mid-block 

non-turning crashes 

50.031.0
2 28. CQAUCMN  -4102 27.0L  Poisson 0.31 

All mid-block non-

turning crashes 

42.097.0
2 39. LQAUAMN  -5104  

NOPARKING , 

 25.0PARKINGNO  

NB  

k=1.6 
0.17 

Cyclist signalised 

crossroad product of 

link 

  03.017.03
0 1016.6 CQAUCXT  

CYCLANE  

41.1CYCLANE  

Poisson 0.25 

All signalised 

crossroad product of 

link 

67.0-4
0 1071.3 QAUMXT   Poisson 0.05 

a GoF (Goodness of Fit statistic) indicates the fit of the model to the data. A value of less than 0.05 indicates a 

poor fit, whereas a high value indicates a good fit. 

b NB = negative binomial 

c k is the gamma distribution shape parameter for the negative binomial distribution. 

Table XS1 shows that traffic volume (Q) is an important variable in all models and that cycle volume (C) 

is an important variable in all ‘cycle v motor vehicle’ crash types. Length (L) is also an important 
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variable in mid-block crashes, with safety improving as the lengths between major intersections 

(roundabouts and traffic signals) increase.   

The presence of a flush (or painted) median (FLUSHMEDIAN) reduces cycle-related crashes for mid-

blocks (by 37%), particularly where turning traffic is involved (52%), according to the models. This is 

likely to be a result of the extra space that cyclists and motor vehicles have to take evasive action if a 

crash is likely. The availability of space is a key issue for cyclists, which is reflected in this result. This, 

of course, is difficult to achieve on busy arterial roads, and providing (more) room for cyclists is a 

trade-off that needs to be made in balance with the requirements of other road users. Where cycle 

volumes are high and carriageways are typically wide, as occurs in Christchurch, this is not as difficult 

to justify as in cities like Auckland, where carriageways and lane widths are typically narrower and cycle 

volumes are lower. 

The absence of parking is a key factor for the ‘all crashes’ mid-block models. The overall reduction is 

75%, indicating that parking does have a major effect on crash rates. While parking is not the key 

safety factor, routes where parking is little used (ie where a parking lane is marked, but the proportion 

of parking spaces that are used is low) have crash rates between 30% and 120% higher than for 

sections with average parking rates (these models are provided in appendix A). This could be a result 

of cyclists using the parking shoulder for most of their trip and having to pull out into the traffic lane 

to go around parked cars. This movement may catch motor vehicle drivers unawares, leading to a 

potential conflict. This finding needs further research to confirm the behaviour of cyclists and motor 

vehicles in such circumstances. 

The presence of a cycle lane does not feature as a key discrete variable for the mid-block sections, 

where flush medians and ‘no parking’ zones appear to be more important variables. However, crash 

prediction models have been developed that include the presence of a cycle lane (see appendix A) and 

it was found that crash rates were typically 20–30% higher on those routes with cycle lanes. This did 

not compare well with overseas research, which typically shows a reduction in all crashes. A ‘before 

and after’ study was undertaken and it was found that a 10% reduction in all crashes was found at 

those sites that have had cycle lanes installed. The difference is likely to be the result of more cyclists 

using the roadway as a result of the cycle lane going in compared with untreated sites (we only had 

‘after’ cycle counts) and a bias toward treating routes which had a history of cycle crashes. Even the 

crash reduction of 10% seems low compared to overseas research, and this may be caused by the 

increase in cyclists and by some of the older cycle lanes included in the study being below standard, 

particularly in terms of width. The traffic signal model also showed that cycle facilities increased the 

crash rate. Further research is underway on the effect of various cycle facilities at intersections.            

The overseas research indicates that the number of crashes decreased when on-roadway cycle lanes 

were installed; the reduction of cyclist crashes generally varied from 35% to 50%, although one source 

did report an increase in cyclist crashes. Total (cycle and motor vehicle) crashes were found to decline 

by 6.5% to 35%. This compares with the 10% of ‘all crashes’ that are saved in this study. It was also 

found that narrower cycle lanes were three to four times less safe than wider cycle lanes, which may be 

a factor in several of the sites used in this study. 
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Safety of cycle paths 

Research on the safety aspects of off-roadway facilities is not available in New Zealand. The research 

findings that are available internationally are presented. The factors that should be considered when 

selecting either on-roadway or off-roadway facilities are discussed. 

Studies conducted to compare the event rates for on- and off-roadway cycling have shown that 

shared-use footpaths are much less safe than other on- or off-roadway cycling options, with a wide 

amount of data indicating that cycling on the footpath is 1.8 to 2.5 times more dangerous than cycling 

on the roadway, and 8 to 11 times more dangerous than cycling on an off-roadway track (with very few 

or no driveways or vehicle crossings). In Denmark, before-and-after studies of off-roadway cycle paths 

were undertaken over a period of three years. The results showed that cyclist casualties increased by 

48% following introduction of off-roadway cycle paths. In addition, vehicles, moped riders and 

pedestrians suffered more crashes, with an overall rise in casualties of 27%. 

These footpath dangers arise principally from conflicts with motor vehicles, pedestrians and other 

cyclists. 

In order to reduce these conflicts and make an off-roadway path safer, the three most important 

factors to accommodate appear to be: 

 the number of motor vehicle crossings on the path and the priority at each crossing 

 the visibility and pavement marking at crossings and underpasses 

 the width of the off-roadway path. 

The research also indicated that better footpath maintenance could improve the safety experience of 

footpath cyclists, as well as the distance from adjacent roadways, and the speed limit and number of 

lanes on adjacent roadways. 

A British study analysed five types of cycle path crossings with minor roads and found that priority at 

such crossings was a major hazard for cyclists, followed by side-road motor vehicles blocking the cycle 

path. Cyclists remaining on the major roadway (as opposed to the off-roadway path) had fewer 

problems at the junctions with minor roads. 
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Speed and volume reduction measures 

The Danish Ministry of Transport recommends that a desirable speed for motor vehicles where cyclists 

and motor vehicles use the same traffic lanes is less than 40km/h. This is supported by a number of 

other overseas studies. A Bicycle Federation of American report found that when vehicles travelling at 

32km/h strike pedestrians and cyclists, only about 5% are killed and most injuries are slight. At 

48km/h, 45% are killed and many are seriously injured. When cars were travelling at 64km/h, 85%of 

the pedestrians and cyclists are killed. Another study found that more than half of all cycle fatalities 

were found to be on roads with posted speed limits greater than 35mph (56km/h) even though less 

than 20% of all collisions occurred on roads with higher speeds. The Austrian city of Graz adopted a 

30km/h speed limit for all residential areas except major roads (about 75% of all roads in Graz or 800 

km), resulting in the number of cycle crashes dropping despite the number of cycle trips per day 

increasing. These studies support the view that reducing speed does improve cycle safety. 

New Zealand has found that the crash rate per cyclist reduces as the cycle volume increases; the ‘safety 

in numbers’ effect. Conversely, if the cycle volume remains constant but the motorist volume is 

decreased, the expected crash rate per cyclist decreases and vice versa. This research can be used to 

calculate the safety effects of changes in both cycle and motor vehicle volumes in the New Zealand 

context, either up or down, for urban mid-block sections, traffic signals and roundabouts. 

Treatment evaluation 

A number of engineering treatments can be applied by engineers and other professionals to improve 

cycle safety. These treatments are typically grouped into a ‘Five-Step Hierarchy’ of measures:    

1. reducing motor vehicle traffic volume 

2. reducing motor vehicle traffic speeds 

3. intersection treatment and traffic management 

4. reallocation of carriageway/corridor space (eg on-roadway facilities)  

5. separating cycle facilities (eg off-roadway routes) 

The results from this study and from the international literature enable the effectiveness of various 

measures under each of these hierarchy categories to be quantified. The research undertaken is of 

variable quality and, in some areas, is not conclusive, and so should be used with caution. 

Nevertheless, the research does provide engineers and other planners with some evidence of the 

effectiveness of the various measures, which, along with the different implementation costs, can assist 

in the selection of an appropriate treatment to improve cycle safety.     

Overall, this research and the literature that has been reviewed indicates that significant crash savings 

can be achieved for cyclists by implementing one or more of the measures specified. It needs to be 

acknowledged that different types of cyclists use our roads and that their needs vary. Young cyclists 

and new (novice) cyclists are likely to prefer off-roadway facilities, or low-volume and low-speed 

roads. More confident cyclists are also likely to ride on busy roads as they place a higher premium on 

using more direct routes, and their safety can be compromised if on-roadway facilities are not 

provided.        
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Abstract 

Cycling is a sustainable mode of travel and an alternative to motor vehicle trips, particularly for shorter 

trips. However, the risk of crashing while cycling is typically higher than while travelling in a motor 

vehicle. To create a safer environment for cyclists, traffic engineers and transport planners can select a 

number of safety countermeasures. These include changes to the road layout, such as reducing traffic 

volumes and speeds; installing cycling lanes and paths; and conducting enforcement and education 

programmes focused on drivers and cyclists. 

The crash benefits to cyclists of reducing traffic volumes and speeds, and constructing cycle lanes and 

intersection treatments have been investigated during 2006 and quantified based on overseas research 

and data collected within Christchurch, Palmerston North and Nelson. It was found that cycle lane 

facilities provided a reduction in cycle crashes of around 10%. No suitable New Zealand data is available 

on the safety of cycle paths and speed reduction measures, so the discussion focuses on international 

research findings. 
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1 Introduction 

1.1 Background 

Cycling is a sustainable mode of travel and an alternative to motor vehicle trips, particularly for shorter 

trips (less than 5km). Government transport strategies, including the New Zealand Transport Strategy 

(Ministry of Transport 2008) and Getting there – on foot, by cycle (Ministry of Transport 2006), 

encourage the development of cycling and walking plans, and infrastructure improvements that 

encourage more ‘active’ mode trips. Additional funding is also being provided in the national land 

transport programme specifically for active modes. 

While promoting more cycling is likely to bring many benefits, the risk of having a crash while cycling 

is typically higher than while travelling as a driver or passenger in a motor vehicle. However, recent 

research by Turner et al (2006) demonstrates that a ‘safety in numbers’ effect for cyclists is commonly 

seen. At the traffic signals, roundabouts and mid-block sections considered in the research, the crash 

risk per cyclist reduced at higher cycle volumes. For several of the models, the crash risk per cyclist at 

higher average daily traffic cycle volumes was several magnitudes lower than at low volumes. 

While this is reassuring, it remains that when a motor vehicle driver or passenger chooses to switch to 

cycling, their crash risk will generally increase, particularly when travelling on low-volume cycle routes 

or high-volume motor vehicle routes. 

The challenge is to create an environment for cyclists that is as safe as possible. This can be achieved 

through a series of measures, including, where practical, reducing traffic volumes and speeds on high 

cycle volume routes, building on-roadway cycle lanes and intersection facilities, and constructing off-

roadway cycle paths. The safety benefit of most of these measures has not been quantified. The 

relationship between cycle crash risk and traffic volumes has already been established. This study will 

extend the work by Turner et al (2006) to consider crash rates for on- and off-roadway cycle facilities. 

1.2 Objectives 

The purpose of this research is to establish the additional crash risk reductions that can be achieved by 

reducing traffic speed, and installing cycle lanes, cycle paths and intersection cycle facilities. This study 

has a number of objectives, including: 

 calculating the safety benefit (reduction in crashes) of installing cycle lanes on urban routes 

(collectors and arterials with residential and commercial land use) 

 assessing the safety benefit of installing various cycle facilities (eg approach lanes and forward 

waiting areas) at traffic signals and roundabouts 

 comparing the crash risk of cyclists using on-roadway (cycle lane) and off-roadway (cycle path) 

facilities. (the cycle path analysis also investigates the crash risk at road crossings) 

 assessing the safety benefit to cyclists of installing traffic calming or speed reduction measures. 

This research is necessary, as many road safety specialists expect that a large mode shift from motor 

vehicles to cycling will lead to a significant increase in crashes. The research by Turner et al (2006) 

shows that a ‘safety in numbers’ effect occurs and that the crash risk drops significantly as cycle 
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volumes increase. However, in most cases, the crash risk still remains higher than that of motor vehicle 

drivers and passengers. This research will examine what impact various cycle facilities can have on 

reducing the crash risk further. 

1.3 Report structure 

An international literature review has been carried out to establish what overseas research is available 

on the safety benefits of on- and off-roadway cycle facilities (chapter 2).   

The report then summarises available data on cycle crashes in New Zealand, including data from the 

New Zealand Crash Analysis System (CAS), data reported from St. John’s Ambulance, data extracted 

from the Accident Compensation Corporation (ACC) and public hospital databases, and data from the 

0800 CYCLECRASH system (Nelson/Tasman) and other council reporting systems, such as the Cycle 

Hazard Incident Reports (CHIRP) system in Christchurch. 

This is followed by a description and initial analysis of the data collected for this study, including crash 

traffic volumes and layout variables. The safety benefits and drawbacks of cycle facilities have then 

been assessed for on-roadway cycle lanes and intersection treatments using two analysis methods: 

 crash prediction models  

 Empirical Bayes Analysis.   

The report also contains four appendices: 

 Appendix A outlines the crash prediction model parameters. 

 Appendix B explains the predictor variables and model parameters. 

 Appendix C lists the subscripts used to name the models. 

 Appendix D gives a list of works recommended for further reading on this topic. 

1.4 Terminology 

The terminology used to describe cycle facilities varies greatly internationally, and the terms ‘lane’, 

‘path’ and ‘track’ have differing uses. The terminology used in this report is derived from that used in 

The cycle network and route planning guide (Land Transport New Zealand (LTNZ) 2004). The main 

terminology used here is: 

 cycle lane: a lane marked on a roadway with a cycle symbol, which can only be used by cyclists 

 cycle path: an off-roadway path for cyclists. Cycle paths are further broken down: 

– (shared-use) footpath: a path immediately adjacent to or in very close proximity to the 

roadway which is typically shared with pedestrians, and may frequently cross driveways 

and side roads. It may also be known as a sidewalk overseas 

– (off-roadway) track: a cycle path typically segregated from a roadway facility, typically 

with longer distances between cycle crossings; eg a rail trail, a coastal or river path, or a 

path along the route of a motorway. It can be an exclusive cycle path, a shared-use path or 
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a separated path. Cycle tracks can include non-paved recreational tracks for mountain 

bikers but these facilities were not included in this research 

 cycle crossing: a crossing of the road network by a cycle path. 

A wide variety of terminology is also used in describing cycling facilities specifically at intersections. 

Cumming (2000) divided the model intersection for cyclists into six elements (see figure 1.1), although 

not all intersections have every element (eg many intersections lack storage for cyclists). Cumming’s 

terminology is commonly used in New Zealand and has therefore been adopted through this report. 

This system simplifies a complex design problem into a number of smaller and more manageable 

design elements. Cumming also identified terminology for different types of the six model elements at 

intersections (also shown in figure 1.1). 

Figure 1.1 Six elements and types of cycle facilities at intersections (adapted from Cumming 2000) 
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2 Literature review 

2.1 Introduction 

2.1.1 Legislation 

When interpreting the outcomes of international studies into cycle facilities, it is important to consider 

the legislative and regulatory environment. In many countries and states, cycle lane and cycle path use 

is mandatory if they are present. In New Zealand, the Road User Rule (Ministry of Transport 2004) does 

not forbid cyclists from using general traffic lanes where an adjacent dedicated facility is present, 

except on motorways. This is not typical worldwide; for example, cycle facility use is mandatory in: 

 The Netherlands 

 Denmark 

 Germany (if a bike lane sign is displayed)  

 France (if required by local authorities)  

 Ireland  

 the Canadian Province of Quebec 

 The States of Alabama, California, Hawaii, Maryland, New York, Oregon (if required by local 

authorities) and Pennsylvania (if indicated by a sign).  

The United Kingdom has both advisory cycle lanes (use not required) and mandatory cycle lanes (use 

required) (Organisation for Economic Co-operation and Development (OECD) 1998). Motor vehicles are 

not allowed to park or drive in the mandatory lanes, but no such restrictions exist for the advisory 

lanes, which can provide more of a psychological space for cyclists instead of a legal space. 

As different users benefit from different types of facilities and some facilities are less suitable for 

different groups (LTNZ 2004), mandatory use can influence the literature. A number of organisations 

and individuals internationally are opposed to specific provision for cyclists and argue for cyclists to be 

treated as ‘vehicles.’ This opposition possibly stems from mandatory use, whereas New Zealand has no 

such requirements. 

Internationally, priority rules also differ. For example, Sweden has special rules for cyclists crossing the 

road, where the cyclist must take the speed and distance of the oncoming vehicles into consideration 

before crossing. In the Netherlands, cyclists must always give way to motorists at intersections without 

right of way regulations, except in special residential areas (woonerven) (OECD 1998). In New Zealand, 

cyclists are treated as vehicles if they are using the roadway; in other circumstances, they are treated 

more like pedestrians (for example on shared-use paths and mid-block signalised crossings). In other 

words, a cyclist on a shared-use path adjacent to a roadway must give way to traffic on intersecting 

crossroads and accesses, just as a pedestrian would. 
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2.1.2 Cyclist skill levels and needs 

The type of users of a facility is an important consideration when examining cyclist safety. The cycle 

network and route planning guide (LTNZ 2004) groups cyclists into three main skill levels: 

 child/novice 

 basic competence 

 experienced. 

The type of facility that cyclists in each group prefer is an important. The purpose of a cycle trip also 

influences facility selection. Table 2.1 shows cyclists’ skill levels and typical preferences (LTNZ 2004). 

Table 2.1 Cyclist skill levels and preferences (adapted from LTNZ 2004) 

Skill level Characteristics Preferences 

Child/novice Depending on their age, children have 

serious knowledge, perceptual and 

cognitive limitations in relation to roads. 

They can be unpredictable, do not have 

a good appreciation of road hazards and 

are generally unfamiliar with road rules. 

However, children as young as eight do 

not pose as high a risk as adolescents, 

as younger children have a reduced 

tendency for deliberate risk-taking 

behaviours.   

These cyclists most commonly ride to 

schools and shops, and for recreation near 

their homes. They cannot safely interact 

with traffic apart from on traffic-calmed 

neighbourhood roads. They prefer full 

separation from other traffic if travelling 

along busier roads, and grade separation 

or traffic signals for crossing them. 

Basic competence Cyclists can achieve basic competence at 

about 10 years of age with appropriate 

training. Their utility trips generally 

extend further to intermediate and high 

schools. 

These cyclists can ride on quiet two-lane 

roads, manoeuvre past parked cars, and 

merge across and turn right from beside 

the centre line. On busier roads, they 

prefer cycle lanes and facilities at 

intersections. They usually lack the 

confidence to defend a lane in narrow 

situations.  

Experienced These cyclists have usually learnt by 

long experience how best to interact 

assertively with traffic. They typically 

make longer commuting trips, sports 

training rides and cycle touring journeys. 

They do not require specific cycle facilities, 

but instead require enough room for 

faster/busier situations. They will defend a 

lane where they do not have enough room, 

and will not usually divert to a cycle path. 
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2.2 Cycle facility safety 

Facilities for cyclists are a highly debated topic in the international literature. A number of studies have 

been formulated to prove the advantages or disadvantages of particular facilities based on the personal 

positions of the authors. The centre of this argument is based on the provision of on- or off-roadway 

cycling networks.   

Some authors advocate that cyclists should all behave as motor vehicles, as in most instances, the local 

traffic regulations allow this. Forester (2001) advocates this position. He states that the 

counterargument for off-roadway facilities is that they are supposedly safer, which encourages people 

to take up cycling. Forester argues that the basis of this argument incorrectly assumes that the high 

cycling rates in the Netherlands are attributed to an off-roadway cycling network, which does not take 

account of other important factors.   

In the past, off-roadway paths and the use of quiet streets were advocated as the core cycle network 

because of the safety issues of cyclists and motor vehicles using the same space. More recently, 

processes have been developed to determine whether on- or off-roadway facilities should be provided 

based on traffic volumes and speeds (LTNZ 2004). Figure 2.1 shows the appropriate cycle facilities 

recommended for a mix of traffic volumes and speeds in the Cycle network and route planning guide 

(2004). Planners now have more awareness of how appropriate different types of facilities are to 

different types of cyclists. 

However, some argue that traffic volumes and speeds are not the only measures to decide the cycle 

facilities. The London Cycling design standards (Transport for London 2005) provides the processes to 

decide appropriate cycle facilities and consider traffic calming options. Figure 2.2 shows that the two 

main options are either better mixed cycling conditions on calmed roads with limited space and 

low/slow traffic flows, or better segregation on high/fast traffic flows. It also recommends cycle lanes 

should be considered as the first option where both on-roadway cycle lanes and off-roadway cycle 

paths are appropriate.  
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Figure 2.1 Preferred separation of bicycles and motor vehicles according to traffic speed and volume 

(adapted from LTNZ 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes to figure 2.1: 

a This diagram is to be applied to urban roads and is not appropriate for rural or non-urban roads. 

b Combinations of low speeds and high traffic volumes are very rare. When these conditions occur, 

segregation may be desirable in order to minimise conflicts. 
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Figure 2.2 Cycle facilities based on motor traffic volumes and speeds (adapted from Transport for London 

2005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes to figure 2.2: 

a Each route will need to be judged in the light of its specific situation. 

b Cycle lanes or tracks will not normally be required in traffic calmed areas. 

c Congested traffic conditions may benefit from cycle lanes or tracks. 

d Designs should tend to either calm traffic or segregate cyclists. 
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2.3 On-roadway cycle facilities 

2.3.1 Cycle crash analysis 

Munster et al (2001) reported that on-roadway cycle crashes in New Zealand occurred mostly in a 

location not specifically allocated for cycling. Forty-eight percent of crashes occurred in the traffic 

lane, 32% on the shoulder and 13% on the footpath. Only 7% occurred in a cycle lane. 

Turner et al (2006) also interviewed casualties at Christchurch Hospital and those who had made an 

ACC claim. Of the 192 cyclists surveyed who had an injury crash on the road, 73% involved a motor 

vehicle, 3% involved a pedestrian and the remainder were cycle-only crashes. Crashes that occurred off 

the roadway were not included in the study. 

Few studies of the safety benefits of on-roadway cycle facilities have also been carried out 

internationally.  Where crash benefits have been reported, the crash benefits, in many instances, only 

consider a single site and are based on a simple before-and-after analysis of reported crashes.  

Kaplan (1976) undertook a detailed study of cyclist crash rates with a large number of respondents for 

the categories (all crashes and serious crashes) regarding incidents that occurred on lanes and bike 

routes. As expected, the rate for crashes occurring on minor streets was somewhat lower than those 

incidents occurring on major streets. This is probably a result of less exposure to high speed and/or 

high-volume traffic for cyclists using minor streets rather than major streets. 

2.3.2 Conflict studies 

Other studies use conflict study techniques to investigate the safety benefits. An example of such a 

conflict study is Hunter et al (1999). This study compared the safety of cycle lanes with wide kerbside 

lanes through a conflict study. This comparative analysis was based on videotapes of almost 4600 

cyclists in three US cities. The majority of the sites were on commuter routes and two of the sites were 

located near university campuses. Cycle lanes were marked with both dashed and solid lines, and some 

were mixed parking/cycle lanes. 

Hunter et al defined a conflict as an interaction between a cyclist and motor vehicle, pedestrian or 

other cyclist such that at least one of the parties had to change speed or direction to avoid the other. 

Of the 188 mid-block conflicts observed, 71% were cyclist/motor vehicle, 10% cyclist/cyclist, and 19% 

cyclist/pedestrian. Almost all of the cyclist/cyclist conflicts occurred in cycle lanes, typically where one 

cyclist manoeuvred around a slower moving cyclist. 

At mid-block locations, Hunter et al reported that significantly more motor vehicles encroached into 

the adjacent traffic lane when passing cyclists in wide kerbside lanes (17%) than cyclists in cycle lanes 

(7%). It should be noted that 26% of ‘wide’ kerbside lanes were less than 4.3 metres wide. These 

encroachments rarely resulted in a conflict with another vehicle. 

Compared with those in cycle lanes, cyclists in wide kerbside lanes experienced more cycle/pedestrian 

conflicts and fewer cycle/cycle conflicts. The scale of response by cyclists or motor vehicle by facility 

type did not reveal any differences. Overall, 98% of the conflicts were coded as minor, with differences 

by facility type. Motor vehicle conflicts associated with cycle lanes included illegal parking in the lane, 

entering/exiting on-street parking, and a driver or passenger entering/exiting a parked or stopped 

vehicle. Motor vehicle actions more associated with wide kerbside lane conflicts included turning right 
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(left in the New Zealand context) in front of a cyclist after passing, and other actions such as failing to 

give way, improperly turning right and not allowing cyclists enough room. 

At intersections, Hunter et al reported that 93% of the intersection conflicts were coded as minor, with 

no differences by facility type. 

Conflicts at cycle lanes involved the cyclist having to stop or swerve for vehicular traffic. Conflicts at 

wide kerbside lanes involved passing stopped or slow-moving vehicles on the right (left in the 

New Zealand context) and encounters with pedestrians. Hunter et al reported that motor vehicles were 

often illegally parking in cycle lanes. This often caused conflicts in the cycle lanes. 

Hunter (1998) carried out another conflict study focusing on red painted shoulders for cyclists in 

Florida, again using video conflict techniques. Eighty percent of cyclists used the shoulders. Hunter 

found that vehicles encroached more severely into the opposing traffic lane when they were passing 

cyclists at sites without red shoulders. Hunter also found that the distance between passing motor 

vehicles and cyclists was greater without red shoulders, which was a statistically significant result. It 

was noted that cyclists who were surveyed considered the red shoulders too narrow. 

Hunter and Stewart (1999) also used video conflict study techniques to examine how well a cycle lane 

operates when adjacent to parking. It was found that few conflicts arose between pedestrians, cyclists 

and motor vehicles. It was reported that cyclists would ride closer to the kerb at locations where 

parking turnover was low or when vehicles were passing them. Conflicts observed were minor in 

nature. 

Vandebona and Kiyota (2001) conducted a similar study in Sydney, observing where the level of stress 

exhibited by cyclists on the roadway. The level of stress was measured through five noticeable physical 

manifestations. These stress indicators were:  

 riding on the footpath 

 riding on the left edge of the lane 

 frequent changing of lane position 

 looking behind in mid-blocks 

 indication of loss of balance. 

Four sites were monitored to compare the level of stress exhibited by cyclists. This study found parked 

cars caused a high level of stress. 

Crashes involving cyclists commonly occur at intersections. Herslund and Jørgensen (2003) 

investigated ‘looked-but-failed-to-see-errors’ in traffic in Denmark using conflict studies. These 

errors result in crashes where a car driver who is supposed to give way to a cyclist collides with the 

cyclist on the priority road. It was found that more experienced drivers are more likely to be involved in 

this type of crash than less experienced drivers. Two possible reasons for this error were discussed: 

 A driver could be focused on a particular location where other motor vehicles may be present and 

missing cyclists in their peripheral vision. 

 A driver may be focused on another motor vehicle when looking for a suitable gap. 
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2.3.3 Before-and-after crash analysis 

Herrstedt et al (1994) carried out a study on the layout of cycle lanes on the approaches to 

intersections. They carried out a before-and-after study of the construction of cycle lanes on 37 road 

segments. Following construction of the cycle lanes, cycle crashes declined by 35% at intersections. 

The study did not take changes in typical crash rates into account as they had no control group. In a 

comparative study, they found that wider cycle lanes (1.2m or wider) were three to four times safer 

than narrower cycle lanes. 

Coates (1999) also performed a before-and-after analysis of crashes at locations where cycle lanes had 

been marked at mid-block locations; it would seem likely that the cycle lanes used in his research were 

mandatory (as opposed to advisory). The data collected in Oxford in the United Kingdom where 25km 

of cycle lanes had been constructed in the previous 20 years. Nearly 18km of cycle lanes were 

introduced in two phases at 11 sites in 1981 and 10 sites in 1986. These cycle lanes were 

predominantly located on significant radial routes. Three years’ worth of before-and-after data was 

used for the first phase sites, but the second phase sites used six years’ worth of data.   

Coates compared the number of crashes before and after the cycle lanes were installed. The figures 

indicated a 4% reduction in total crashes at the first phase sites and a 9% reduction at second phase 

sites. When considering cycle crashes only, the first phase sites had a 29% increase and the second 

phase sites a 2% decrease. During this period, cycle crashes throughout Oxford increased by 20% and 

17% respectively. He notes that cycling volumes increased to 20% of all traffic in the early 1980s and 

has since stayed constant. 

Table 2.2 shows the number of crashes mid-block before and after the construction of cycle lanes in 

Coates’ study. It shows that cycle lanes reduce the number of crashes mid-block by about 30%. Coates 

attributes the increase in the number of crashes involving cyclists riding into the back of parked 

vehicles to a problem with drivers parking on the lanes and a false sense of security that the cycle 

lanes provide to cyclists. 

Table 2.2 Crashes at mid-block locations where cycle lanes were installed (Coates 1999) 

Crash type Before After 

Cyclist pulls out from side of the road to turn right, crossing 

or entering the path of a motor vehicle 
16 7 

Motor vehicle conflicts with cyclists while overtaking 17 12 

Cyclist riding into the back of a parked vehicle 2 10 

Car door opens into path of cyclist 9 3 

Vehicle pulls out from kerb into path of cyclist 4 2 

Vehicle travelling in opposite direction crosses carriageway 

into path of cyclist 
0 1 

Pedestrian steps into cycle lane in path of cyclist 0 1 

Total 51 36 

 

Coates also investigated the before-and-after rate of crashes at intersections following the marking of 

the mid-block cycle lanes. Cycle lanes were not marked across intersections. Table 2.3 shows the 

number of intersection crashes before and after the construction of mid-block cycle lanes. 



Cycle safety: reducing the crash risk 

 

24 

Table 2.3 Crashes at intersections along routes where installed (Coates 1999) 

Crash type Before After 

Vehicle turns left into intersection across path of cyclist 8 10 

Vehicle turns right into intersection across path of cyclist 7 13 

Vehicle turns left out of intersection into path of cyclist 4 5 

Vehicle turns right out of intersection into path of cyclist 17 20 

Cyclist turns right out of intersection into path of vehicle 

approaching from the right 
6 0 

Cyclist turns right into intersection across path of vehicle 

approaching from the opposite direction 
1 3 

Cyclist turns right out of intersection into path of vehicle 

approaching from the left 
2 1 

Cyclist turns left out of intersection into path of vehicle 

approaching from the right 
2 3 

Total 47 55 

 

Coates concluded that providing cycle lanes mid-block worsened crashes at intersections, producing a 

very small increase in the number of crashes. This conclusion did not, however, take increasing cycle 

volumes into account.   

The Danish Road Administration (1994a) carried out a study at four signalised intersections where the 

stop line for motorists was recessed by five metres. Twenty to thirty metres before these intersections, 

cycle paths joined the roadway and became cycle lanes of reduced width. These lanes were separated 

from motorised traffic by a white rumble strip. Behavioural and conflict studies were carried out before 

and after the motor vehicle’s stop line was recessed. This study focused on conflicts in which a motor 

vehicle turning right (turning left in the New Zealand context) approaches the intersection at the same 

time as a cyclist is riding straight ahead. Such conflicts were analysed from video recordings. 

After the alteration, the time between the cyclist leaving the potential conflict area and a vehicle 

reaching the same area increased at three of the locations and remained unchanged in the fourth. Prior 

to alteration, 12–24% of drivers turned right directly in front of a cyclist. After implementation, only 3% 

to 6% did. The study concluded, on the basis of these results, that at three of the intersections, the 

behaviour of drivers improved. 

Jensen (2000a) reported on the success of new layouts at signalised intersections in five Danish 

municipalities. Four different layouts were applied at 11 signalised intersections in 1991–1993. These 

layouts consisted of narrowed cycle lanes to the limit lines, ‘slalom’ cycle lanes, staggered limit lines, 

markings of cycle crossings and profiled strips. Figure 2.3 and figure 2.4 show two of these four 

different layouts. 
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Figure 2.3 Layout with ‘slalom’ cycle lane to stop line, staggered stop lines and marked cycle crossing 

(Jensen 2000a) 

 
 

Figure 2.4 Layout with narrowed cycle lane and marked cycle crossing (Jensen 2000a) 

 

The before-and-after study used crashes reported to police. The study considered the five years 

(maximum) before and after a new layout was introduced, and control groups of signalised 

intersections were located in the same municipalities as the new layouts. Table 2.4 compares the 

expected and observed numbers of crashes at intersections with the new layouts applied. In Denmark, 

it is compulsory for cyclists and moped riders to use cycle paths and cycle lanes if these are provided, 

which is important to take into account when considering the results of this study. 
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Table 2.4 Comparison between expected and observed crashes at intersections with new layouts 

(Jensen 2000a) 

Group 1a Group 2b Group 3c Group 4d Intersection 

Number 
Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. 

1 0 0 0 2 7.2 11 3.7 7 

2 0 0 4.1 2 4.1 4 12.8 12 

3 0 0 1.4 0 1.4 1 2.1 7 

4 0 2 6.8 6 1.0 1 2.9 7 

5 1.0 1 14.8 20 8.2 8 20.1 24 

6 0 1 3.9 3 12.6 13 36.5 33 

7 0 0 2.0 0 10.2 5 12.8 15 

8 - - 1.6 3 3.1 3 6.8 4 

9 - - 0.0 0 0 1 2.6 8 

10 0 0 4.7 4 0 2 2.6 3 

11 0 0 0.8 0 3.1 0 8.5 10 

Total 1.0 4 40.0 40 50.8 49 111.4 130 

Notes to table 2.4: 

a Group 1 crashes involved at least one cyclist or moped rider on the road section before the stop line. 

b Group 2 crashes involved at least one cyclist or moped rider coming from an entry (in the intersection after 

the stop line). 

c Group 3 crashes involved at least one cyclist or moped rider coming from other entries. 

d Group 4 crashes did not involve cyclists or moped riders.  

Table 2.4 shows that the new layouts in Jensen’s study did not considerably change the number of 

crashes involving cyclists. 

2.3.4 Observation studies 

Ryley (1996) examined non-kerbside approach cycle lanes and the effect of different signal timings on 

the value of advanced stop lines in the UK by observation. Advanced stop lines in the UK allow cyclists 

to stop in a storage box in front of motor vehicles at signalised intersections and typically include a 

mandatory cycle lane approaching the storage box. 

Ryley found that a large proportion of cyclists used a kerbside cycle lane approach to turn left or go 

straight ahead. Few cyclists used the complete length of the kerbside cycle lane up to the advanced 

stop line to turn right. Ryley reported that some cyclists used part of the kerbside cycle lane up to the 

stop line to turn right, but not the entire lane. Some cyclists turning right were observed to use part of 

the cycle lane and then move out before the storage area; others ignored the cycle lane altogether. 

VicRoads (2000) also undertook a behaviour study. This study not only investigated cyclist behaviour 

but also motorist behaviour before and after the installation of storage boxes at signalised 

intersections in St Kilda Road, Melbourne. The stopping locations of cyclists and motor vehicles were 
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recorded to assess if behaviour changed. These storage boxes were not connected to cycle lanes, 

which stopped prior to the intersections. 

Before the marking of the storage boxes, cyclists were observed to stop on the pedestrian crosswalk or 

just forward of it. After the marking of the storage boxes, 40% of cyclists stopped in the box. However, 

67% of stopping motorists also stopped in the storage box. The authors of the VicRoads study believed 

this was because the box was placed behind the original limit line. 

2.4 Off-roadway cycle paths 

2.4.1 Cycle paths in New Zealand 

A cycle path is a path where cyclists are segregated from motor vehicles, either adjacent to a roadway, 

or completely independent (such as a rail trail or a foreshore trail). Internationally, many of these paths 

are specifically for cyclists. In New Zealand, the paths are almost always shared with pedestrians. In 

many countries, it is common for cycle paths to be adjacent to roadways, even urban roads with low 

speed limits; in New Zealand, on-roadway cycle lanes are more likely to be provided. This is because of 

New Zealand traffic legislation, where cyclists on segregated paths adjacent to roadways do not have 

priority over motor vehicles leaving and entering driveways and side-roads, as is the case in many 

other countries. Therefore caution should be exercised when attempting to transfer the results of 

overseas studies to New Zealand conditions. Off-roadway cycle path safety research generally covers 

footpaths adjacent to roadways; very limited data is available on cycle tracks away from roadways. 

2.4.2 Off-roadway cycle path safety 

2.4.2.1 Studies of cycle crashes on off-roadway paths 

Bach et al (1988) undertook a before-and-after study of 105 new off-roadway path segments in 

Denmark between 1978 and 1981. The total study length was 64km of urban one-way paths; in 

Denmark, these paths are cycle-only facilities separated from the roadway and footpath by kerbs (this 

study looked only at one-way paths but Denmark has some two-way paths where some cyclists ride 

opposite to the motor vehicle traffic in the adjacent roadway). The results showed that cyclist 

casualties increased 48% following the introduction of off-roadway paths; moped riders and 

pedestrians also suffered more crashes (table 2.5). The overall casualties increased by 27%.  
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Table 2.5 Cycle crashes on off-roadway paths in Denmark (Bach et al 1998) 

Between intersections At intersections Crashes 

Before 

(no off-roadway 

paths) 

After 

(with off-roadway 

paths) 

Before 

 (no off-roadway 

paths) 

After 

(with off-roadway 

paths) 

All cycle crashes 46 49 71 105 

Cycle v vehicle 29 19 55 82 

Cycle v other 17 30 16 23 

All mopeds 23 32 23 38 

Moped v vehicle 12 13 19 20 

Moped v other 11 19 4 18 

All pedestrian 32 43 43 56 

Pedestrian v 

vehicle 
28 24 35 40 

Pedestrian v 

other 
4 19 8 16 

All vehicle 108 108 169 213 

All vehicles 28 34 53 66 

Vehicle v other 80 74 116 147 

Totals 134 154 187 251 

 

Leden (1989) has undertaken a field survey of 14,000 school children between ages of 6 and 16 in 

Finland. The results showed that for children cycling, the risk of colliding with a motor vehicle was 2.7 

times higher at intersections with a cycle track (which the child used) than at roadway-only 

intersections. The risk was highest when cycle crossings were 8–15m from intersections and when 

traffic signals were present. The overall risk of collision is 0.5 crashes/100,000km on the carriageway 

but 1.3 crashes/100,000km on a cycle track, rising to 2.8 when roadways and cycle tracks have 

concurrent green signals at junctions. 

The American Association of State Highway & Transportation Officials (1999) also strongly warns 

against off-roadway footpaths in the US, and states that using or providing a footpath as a shared-use 

path is unsatisfactory for a variety of reasons. Sidewalks are typically designed for pedestrian speeds 

and manoeuvrability, and are not safe for higher speed bicycle use. Conflicts are common between 

pedestrians travelling at low speeds (exiting stores or parked cars, etc.) and cyclists, as are conflicts 

with fixed objects (eg parking meters, utility poles, sign posts, bus benches, trees, fire hydrants and 

mail boxes). 

Studies conducted by Pedler and Davies (2000) concluded that cycle crossings with priority for cyclists 

across minor roads appeared to work satisfactorily in some circumstances, but by no means all. Among 

all the options, crossings where cyclists have no priority caused the least confusion. However, this does 

not mean that they are necessarily the correct design in all cases. The sites that appeared to cause 

most confusion or where the priorities were most misunderstood were crossings with partial priority 

for both cyclists and motor vehicles. This research is discussed further in section 2.5. 
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A study by the Danish Road Administration (1994b) analysed cycle crossing safety at priority (give way 

and stop) controlled intersections. Five intersections were studied before and after modification of the 

crossing design. These modifications included bringing the cyclists and motor vehicles closer together 

as they approached the intersection. On the approaches to the intersection, a solid painted line 

separated the cycle lane from the roadway. At the intersection, the cyclists and the motor vehicles were 

separated again to enable the cyclist to leave the conflict area before vehicles entered it or to give the 

cyclist enough time to perform a slight evasive action if the vehicle proceeded. Different surfacing and 

colour also highlighted the conflicting area. Results included more careful motorist behaviour, earlier 

reactions by cyclists (to the approaching intersection) and a reduction in the number of serious 

conflicts at the intersections. 

Petrisch et al (2006), in a study on the safety of off-roadway cyclists using footpaths in Florida in the 

USA, developed a crash prediction model for cyclist v motor vehicle crashes that identified the 

following factors as having the greatest significance regarding the safety of cycling on footpaths: 

 the width of the footpath  

 the effective distance between the footpath and the roadway  

 the posted speed limit on the adjacent roadway  

 the number of lanes on the adjacent roadway. 

Some other factors also affecting off-roadway safety referenced by Petrisch include: 

 the amount of motor traffic crossing the footpath  

 the type of off-roadway treatment  

 the extent to which cyclists using the footpath need to cross into motor vehicle traffic  

 the quantity and nature of the undisciplined traffic using the footpath 

 the speed of the cyclists using the footpath 

 the skill and knowledge that these cyclists can apply to avoiding collisions with all traffic.  

In a British study of 98 cycle path crashes over five years, Rainbird (1979) concluded that consistency 

in layout and markings for off-roadway paths, including crossings, was important to reduce cycle 

crashes. Principal crash types were collisions at road junctions and underpasses caused by poor 

visibility, head-on collisions and loss of control. 
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2.4.2.2 Shared-use paths: cycle v pedestrian conflict and perceptions 

Kiyota et al (2000) investigated the conflicts between cyclists and pedestrians on shared paths in Japan. 

In Japan, cyclists are legally permitted to ride on footpaths. The technique evaluated shared-use paths 

based on the level of risk perceived by subjects who reviewed video recordings of pedestrian and 

cyclist conflicts in a shared space. These videos were analysed further to measure flow levels and 

spacing between pedestrians and cyclists. 

Kiyota et al found that the perceived risk was directly related to spacing between cyclists and 

pedestrians (see table 2.6). Cyclist speed was found to decrease with increasing density of pedestrians 

despite the increased perceived danger (see figure 2.5). 

Table 2.6 Relationship between perceived risk and spacing (Kiyota et al 2000) 

Spacing between users when 

passing 

Probability that pedestrians 

perceive danger 

75cm 0.86 

100cm 0.39 

125cm 0.06 

150cm 0.01 

 

Figure 2.5 Cycle speed and pedestrian volume (Kiyota et al 2000) 
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2.4.3 Conflict studies: cycle path road crossings 

Pedler and Davies (2000) used conflict study techniques to investigate sites where paths adjacent or in 

close proximity to roadways intersected crossroads. The study investigated a variety of crossing 

arrangements, most with priority for cyclists. Pedler and Davies used video cameras to monitor 1512 

cyclists at five different cycle crossings of minor roads. The study team also interviewed 223 cyclists at 

the sites. From the video surveys, all traffic movements were recorded and classified by manoeuvre.   

The study found that the majority of intersections observed were non-hazardous. It was reported that 

in most circumstances, both drivers and cyclists observed who had priority. In most cases where the 

priority was not observed, it was found that the cyclist stopped at the kerb line to let vehicles pass. 

Pedler and Davies also found that higher flows of motor vehicles intersecting the cycle path crossing 

led to more conflicts. They also noted that higher flows of cyclists using the crossing increased the 

likelihood of drivers giving way to cyclists and being more alert to cyclists at the crossing. It was 

reported that some cyclists who continued to travel along the major road had fewer problems than 

those on the footpath. 

Munster et al (2001) studied the role of roadway features in cycle crashes not involving a motor vehicle 

on public roads, cycle tracks and footpaths. From a mail-out survey with 335 responses, they found 

that 51% involved crashes off the roadway. They concluded, based on hospital and ACC data, that 

cycle-only crashes appeared to be twice as frequent as crashes with motor vehicles. 

2.5 Comparative studies between shared-use cycle 
paths and lanes  

2.5.1 UK studies 

Pedler and Davies (2000) analysed five types of cycle crossings intersecting with with minor roads and 

found that that cycle paths with priority for cyclists across minor roads appeared to work reasonably 

satisfactorily in some circumstances, but some hazardous interactions were also observed. Cyclists 

remaining on the major roadway (as opposed to riding on the adjacent footpath) had fewer problems at 

the junctions with minor roads. The majority of cyclists, however, used the cycle path, particularly the 

less confident cyclists such as children. Pedestrians also used the crossing, appearing to benefit from 

the set back ‘give way’ lines and raised crossing. No pedestrian–cyclist conflicts were observed on the 

crossings. 

At the first two sites, the cycle path crossing was a raised ‘bent-out’ cycle crossing from the major 

road and the cyclist had priority, as shown in figure 2.6. The survey results showed that most cyclists 

were observed on cycle paths.  

Figure 2.7 shows that the crossing at the third site was straight (not bent-out) and cyclists had partial 

priority over the side-road traffic. 

Cyclists give way to drivers turning in from the major road but have priority over drivers turning out of 

the minor road. The crossing is on a hump and is straight, but provides no area for entering drivers to 

stop if cyclists are on the crossing, as is provided when the cycle crossing is set back. 
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A conflict often arises when drivers turning out of the minor road do not stop behind the humped cycle 

crossing but instead stop on the crossing, obstructing the cyclist’s route. Motor vehicles turning into 

the minor road, however, have priority over cyclists crossing the minor road. If this situation arises, 

cyclists have to give way to the driver turning into the minor road. The reasons for drivers blocking the 

cycle path are likely to be the need to improve their view of traffic on the major road (including the 

cycle path) and, in busy traffic conditions, to move forward to take advantage of gaps in the traffic. The 

majority of conflicts, therefore, were caused by motor vehicles stopping on the cycle crossing. 

Figure 2.6 Bent cycle path crossing facilities (Pedler and Davies 2000) 
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Figure 2.7 Continued raised cycle path crossing along a major road (Pedler and Davies 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8, however, also highlighted a conflict between the vehicle stopped at the minor road waiting 

to pull out and cyclists moving from 13 to 14 in the bus lane at the fourth site. Motor vehicles were 

pulling out beyond the mouth of the junction into the bus lane to wait for a gap. At the minor road, 

therefore, motor vehicles conflicted with both cyclists on the cycle path and cyclists on the roadway. 

However, it was noticeable that the cyclists on the roadway who were affected by an obstructing car 

were less affected than cyclists on the cycle path. The cyclists on the roadway made less of a deviation 

in their path than the cyclists on the path. 

Figure 2.8 Continued cycle path at an intersection (Pedler and Davies 2000) 
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Figure 2.9 shows that the fifth site had no bent-out crossing and cyclists had to give way to vehicles. 

Figure 2.9 Discontinued cycle paths at intersection (Pedler and Davies 2000) 

 

 

 

 

 

 

 

 

 

The majority of conflicts resulted from motor vehicles stopping on the cycle crossing and obstructing 

cyclists’ paths. Observations showed that cyclists were very aware of the conflicts that might arise and 

were extra vigilant when approaching the crossings. This is likely to be because motor vehicles have 

full priority when turning into and out of the minor road. Priority for motor vehicles is also the 

standard situation in New Zealand, although some locations abroad give priority to cyclists. None of 

the conflicts in this study were classified as potentially dangerous. 

Crossings where cyclists have no priority caused the least confusion. However, this does not mean that 

they are necessarily the correct design in all cases. The sites that appeared to cause most confusion or 

where the priorities were most misunderstood were crossings with partial priority for both cyclists and 

motor vehicles. Vehicles exiting had to give way but vehicles entering did not, as they had no room to 

queue. 

Some cyclists used the major road carriageway in preference to the cycle path. The percentage doing 

so varied considerably between sites. Cyclists remaining on the major road carriageway had fewer 

problems at the junctions but simple comparisons may be misleading. 

Most problems were observed at sites with straight-through crossings, largely caused by poor visibility 

to the right from the minor road, and by high flows of traffic on the major road. In these conditions, 

drivers tended to pull forward and obstruct the crossing. Because of right-of-way constraints, it was 

not possible to deflect the cycle path at these sites to provide queuing space for incoming and 

outgoing vehicles. At all sites, a significant percentage of cyclists were unsure or wrong about the 

traffic priorities on the crossing. However, in most cases, this made them more cautious. 

A comparison between the cycle crossings emphasises the need for sites to have good visibility. In 

addition, other factors such as high vehicle flows on the major and minor roads increase interaction 

and reduce the perceived safety of the crossing. Prestwich Place (figure 2.7) and Davenant Road (figure 

2.8) both have an alternative parallel bus lane for cyclists to use. The low flows of motor vehicles out of 

Prestwich Place and the good visibility for all road users encourage cyclists to use the cycle path. 

Davenant Road has more motor vehicle turning movements, a good on-roadway alternative route and 

confusion about whether vehicles will give way. Therefore, cyclists feel safer using the road. 
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Transport for London (2004) reports on cycle crashes at seven sites in York in the UK, where a 

combination of several types of cycle facility were implemented. This study found that the number of 

cycle crashes reduced by approximately 50% at specific locations and routes. The report did not 

discuss the cycle volumes, any comparisons with control sites or what previous facilities were installed. 

Table 2.7shows the reductions for each of the seven types of facility installed. Reductions of 100% 

(cycle track and advanced limit lines) can be discounted as unrealistic. 

Table 2.7 Cycle facilities & crash reduction rates for York, UK (Transport for London 2004) 

Cycle crashes per year Facility 

Before After 

Measured reduction 

rates (%) 

On-roadway cycle lanes 12.0 5.2 -57% 

Shared-use footpath 3.6 2.6 -28% 

Signalled intersections 2.9 0.5 -83% 

Cycle track* 4.9 0.0 -100% 

Cycle lane 1.7 0.5 -70% 

Advance stop line at signals** 1.0 0.0 -100% 

* Definition of ‘cycle track’ unclear from study. 

** Advanced stop line includes storage box. 

Harland and Gercans (1993) evaluated changes in cycle safety in centres where cycle route experiments 

were implemented in the 1970s and early 1980s. These cycle routes consisted of segregated paths, 

shared-use paths, quiet streets, and new links across barriers such as rivers and rail lines. Harland and 

Gercans found that significant numbers of cyclists transferred from the main roads to the new routes. 

Overall, the number of cyclist casualties in the towns studied did not change, with casualties on the 

minor roads increasing and casualties on the major roads decreasing, as shown in table 2.8. 

Table 2.8 Cyclist casualties before & after cycle facility construction (Harland and Gercans 1993) 

Number of casualties 

A and B roads C and unclassified roads 

Town Area 

Before After Change 

% 

Before After Change 

% 

Experiment 67 71 6 72 121 68 Cambridge 

Control 277 309 12 250 279 12 

Experiment 68 43 -35 74 69 -7 Exeter 

Control 71 69 -3 81 75 -7 

Experiment 14 7 -50 13 15 15 Kempston 

Control 103 74 -28 72 52 -28 

Experiment 112 130 16 84 94 12 Nottingham 

Control 150 183 22 192 167 -13 

Experiment 38 24 -37 31 36 16 Southampton 

Control 190 175 -8 274 257 -6 

Experiment 14 17 21 15 21 40 Stockton  

Control 13 29 123 16 6 -83 
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2.5.2 Northern European studies 

Elvik and Vaa (2004) suggest that no statistically significant change occurs in the total number of 

crashes (motor vehicle, cyclist or pedestrian) when off-roadway paths are constructed, whereas the 

construction of cycle lanes leads to a decrease of 10% for cycle injury crashes and a 30% reduction in 

total crashes. It should be noted that Elvik and Vaa define a cycle lane as being separated from 

motorised traffic by a kerb or ‘traffic segregator,’ which is a common practice in some Scandinavian 

countries but not in New Zealand. However, the crash change rates quoted in Elvik and Vaa are 

amalgamated from a number of studies in multiple countries, some of which do not use this type of 

separation. 

An advanced stop line for cycle lanes at intersections leads to a decrease of 27% for cycle injury 

crashes and a 40% reduction in total crashes. Adding cycle lanes across a signalised intersection 

reduces cycle crashes by 12% but increases overall crashes by 14%. Construction of grade-separated 

crossings has a major decrease of 30% of total crashes. 

Linderholm (1984) in the University of Lund, Sweden, found that the risk of cycle v vehicle crashes was 

11.9 times greater for cyclists riding on the left-hand footpath, and 3.4 times higher for cyclists on the 

right-hand footpath, compared with cyclists riding in the normal position on the roadway, as shown in 

figure 2.10 below. 

Figure 2.10 Relative risk of cycle and vehicle crashes (adapted from Linderholm 1987) 

 

In Finland, Pasanen (1999) collected samples of cyclist data in Helsinki. The results obtained were 

consistent with other studies: it is safer to cycle on streets amongst cars than on two-way cycle paths 

along side streets. The data presented did not include information on cycle volumes so the number of 

cyclists exposed on each cycling facility cannot be compared. Figure 2.11 shows that 45% of the 

cycling kilometres in Helsinki are on cycle paths along side streets, but 56% of injury crashes happen to 

cyclists on these paths. 
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Figure 2.11 Cycle use and crashes on different facilities in Helsinki, Finland (Pasanen 1999) 

 

 

 

 

 

 

 

 

 

 

 

Stichting Wetenschappelijk Onderzoek Verkeersveiligheid (SWOV – the Dutch Institute for Road Safety) 

(2004) summarised research on the safety effects of cycle paths and cycle lanes (Dutch cycle lane and 

path design is similar to Danish). This summary referred to a study by Welleman and Dijkstra (1988) 

that showed segregated cycle paths adjacent to major roadway facilities were safer for cyclists than 

on-roadway painted cycle lanes, and that cycle lanes were less safe than no cycle facilities (ie shared 

traffic). It is important to note that the study did not consider the number of cyclists using the facility 

or the type of adjacent land use. The cycle lane types in the sample set were also diverse: narrow and 

wide cycle lanes, with or without parking, had all been used in the one sample set. The same report 

also found that at intersections, cycle paths were less safe for cyclists than cycle lanes or no cycle 

facilities. 
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2.5.3 USA and Canada 

Aultman-Hall and Adams (1998) attempted to understand off-roadway cycle crashes in further detail. 

Their footpath data was collected in Ottawa and Toronto. Figure 2.12 shows that the conflict rate for 

cycling on the footpath was significantly higher than for on-roadway lanes or off-roadway paths. The 

research also indicated that better footpath maintenance could improve the safety of footpath cyclists.  

 Figure 2.12 Relative event rates of cycle accidents in Canada ( Aultman-Hall  and Adams 1998) 

 

 

 

 

 

 

 

 

 

 

In a study conducted on adult cyclists in the US, Moritz (1998) found that the relative danger index was 

24.8 times as high for footpath riding as for major streets without bicycle facilities (data included all 

crashes, not just cycle v motor vehicle collisions). The study indicated that cyclists are less safe on the 

footpath even when cyclists have right of way, as shown in figure 2.13. 
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Figure 2.13 Relative Danger Index (RDI) of various  cycling facilities (Moritz 1998) 

 

 

 

 

 

 

 

 

 

 

 

RDI = % crashes/% miles ridden. Higher values indicate a higher level of danger. 

Wachtel and Lewiston (1994) compared the safety of on-roadway cycling (with or without cycle lanes) 

to cycling on shared footpaths, basing their study in Palo Alto, California. This study used the numbers 

of cyclists travelling along the footpath adjacent to a number of major routes and the numbers of 

cyclists travelling along the routes on the roadway. It compared the numbers of these cyclists on both 

types of facility and the number of reported crashes on each. This study found that cycling on shared 

footpaths was 1.8 times less safe than cycling on the roadway. Table 2.9 presents the risk ratios by 

age, gender and direction of travel.  

Table 2.9 Risk ratio of cycling on footpaths and on the roadway (Wachtel and Lewiston 1994) 

Footpath Roadway Risk ratio Category 

Cyclists 

observed 

Crashes 

reported 

Risk Cyclists 

observed 

Crashes 

reported 

Risk Footpath to 

roadway 

p 

All cyclists 971 41 1.4 2005 48 0.8 1.8 0.01 

17 years 

old 
693 21 1.0 740 9 0.4 2.5 0.03 

18 years 

old 
278 20 2.4 1265 39 1.0 2.3 0.01 

Female 295 9 1.0 557 13 0.8 1.3  

Male 676 32 1.6 1448 35 0.8 2.0 0.01 

With 

traffic 
656 13 0.7 1897 43 0.8 0.9  

Against 

traffic 
315 28 3.0 108 5 1.5 1.9  

16.34

24.8

4.49

6.8

1.39
2.1

0.94 1.420.66 1
0.51 0.770.41 0.62
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2.6 Perceived cycle safety 

Loveday (2000) investigated cyclists’ perceptions of safety, types of cycling routes used, cyclist 

involvement in crashes within the last year and crash locations. Table 2.10 summarises this data. 

Loveday then conducted a discriminant function analysis to determine whether cyclists had been 

involved in a crash or not.  

Table 2.10 Perceived safety level, usage and percentage of crashes for different cycle facilities (using data 

from Loveday (2000)) 

Perceived safety level* Cycle facility type Mean frequency of use 

Mean Mode Range 

Cycle crashes 

% 

None 3.3 2.5 2 1.4–3.7 44 

On-roadway with cycle 

lane or signage 
2.4 3.3 4 2.5–4.2 3 

Off-roadway cycle paths 2.7 3.7 4 2.8–4.7 25 

Off-roadway shared-use 

paths 
1.7 3.2 4 2.1–4.2 14 

Off roadway-cycle tracks 1.5 3.6 4 3.0–4.2 6 

* 1 = lowest level of perceived safety; 5 = highest level of perceived safety 

Loveday found that cyclists’ crashes could be predicted by frequency of cycling and greater use of off-

roadway cycling paths. This was despite the fact that the perceived level of safety of off-roadway cycle 

paths was high. 

McClintock and Cleary (1996) analysed the safety of cycle facilities introduced in parts of the Greater 

Nottingham area since the early 1980s as part of this experiment. The results of user surveys were also 

reported. The cycle facilities introduced in Nottingham consisted of quiet back streets signed as 

dedicated cycle routes, as well as segregated paths, shared-use paths and signalised mid-block 

crossings of the road network.  

McClintock and Cleary reported that the safety and perceived safety of the off-roadway facilities was 

highly dependent on the quality and type of facilities. As an example of a good quality of cycle path 

that improved safety, they used Clifton Lane, a cycle path adjacent to the main road with adequate 

width, good visibility, and very few driveways and crossings (see figure 2.14). 

Figure 2.14 Clifton Lane cycle path (McClintock and Cleary 1996) 
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McClintock and Cleary also gave Castle Boulevard as an example of a cycle facility that had negative 

impacts on cycle safety (shown in figure 2.15). This facility had a high number of crossings and 

driveways (10), poor visibility, inadequate width and was shared with pedestrians. At this facility, large 

increases in crashes were reported at driveways, despite 90% of cyclists continuing to cycle along the 

roadway. An increased number of cyclists rode on the footpath in adjacent parts of the network. 

Figure 2.15 Castle Boulevard cycle facility (McClintock and Cleary 1996) 

 

 

 

 

 

 

 

 

According to a 2002 Marketing & Communications Research perceptional survey reported in the 

Queensland Cycle Strategy (2005), cyclists in Queensland generally feel safer riding off-roadway on 

cycle paths or on footpaths (see table 2.11). Also, the presence of bike lanes significantly increased the 

perception of safety by cyclists who ride on roadways. 

Table 2.11 Safety perception of cycle facilities (adapted from Queensland Cycle Strategy (2005)) 

Cyclists’ 

perceptions  

(n = 134) 

On roadway with 

cycle lanes 

(%) 

On roadway with 

no cycle lanes 

(%) 

Off-roadway cycle 

path 

(%) 

Off-roadway on 

footpath 

(%) 

Very safe 27 9 76 49 

Somewhat safe 36 18 17 37 

Somewhat unsafe 19 32 4 6 

Very unsafe 3 38 0 4 

Don’t know 15 4 3 4 

 

In Christchurch, the level of satisfaction of on- and off-roadway cycle facilities on Tennyson Street and 

Lyttelton Street was surveyed in 2004 (Christchurch City Council (CCC) 2004). Approximately 90% of 

cyclists in Tennyson St (off-roadway cycle paths) and 91% of cyclists in Lyttelton St (on-roadway cycle 

lanes) were satisfied with the overall layout. While 96% of cyclists in Tennyson St were satisfied with the 

overall appearance of the street, 89% of cyclists in Lyttelton St were satisfied (table 2.12). 
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Table 2.12 Satisfaction level of Christchurch cycle facilities (adapted from CCC 2004) 

Response Tennyson Street cyclists* 

% 

Lyttelton Street cyclists** 

% 

Layout 

Very satisfied 53.00 52.67 

Quite satisfied 37.50 38.67 

Neither satisfied nor dissatisfied 3.00 7.33 

Quite dissatisfied 4.50 1.33 

Very dissatisfied 2.00 – 

Appearance 

Very satisfied 53.00 54.67 

Quite satisfied 43.00 34.67 

Neither satisfied nor dissatisfied 1.50 10.67 

Quite dissatisfied 1.50 – 

Very dissatisfied 1.00 – 

* n = 200 

**n = 150 

A study by the Christchurch Cycle Safety Committee (1991) was undertaken to obtain more data on 

cycle collisions than was available from the police (reported crash data). Questionnaires were 

distributed to adult cyclists, school students, and medical practices and hospitals in Christchurch. 

Figure 2.16 shows the contributing factors found in adult cyclists’ collisions. ‘Not seen in time’ was the 

greatest contributing factor of both serious and minor injury collisions. 

Figure 2.16 Contributing factors to adult cyclists’ serious and minor collisions (Christchurch Cycle 
Safety Committee 1991) 
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2.7 Traffic calming/speed reduction/volume reduction 

A variety of traffic calming techniques and devices are used internationally. These techniques have the 

common goal of reducing traffic speeds and hence improving safety. A number of studies have 

specifically looked at the crash savings of traffic calming, which showed varying degrees of benefits. 

Only a few studies separate cycle crashes from the overall number of crashes in evaluating the 

benefits. 

Zein et al (1997) conducted a study into the safety effects of traffic calming in Vancouver, Canada. The 

study involved a before-and-after analysis of four neighbourhood areas where traffic calming had been 

implemented. On average, a 40% reduction in the total number of crashes involving all modes was 

achieved. Between sites, the magnitude of the benefits varied greatly depending on individual site 

characteristics. Zein et al reported that cyclist safety did not improve significantly following 

implementation of traffic calming. 

Davies et al (1997) filmed 15 traffic-calmed sites in the UK, representing a variety of lane widths and 

narrowings. The study found that at the central islands without cycle bypasses, where the lane width 

was 3.5m–4.3m, most drivers overtook cyclists at or within 20m of the narrowings. The location where 

drivers overtook cyclists did not vary with the lane width. The presence of cycle lanes did not appear to 

affect the percentage of drivers overtaking cyclists. It was also observed that motor vehicle 

encroachment into cycle lanes was high at sites where the remaining width for motor vehicles was less 

than 3.0m. Oncoming motor vehicles did not wait for cyclists but passed them at the narrowing. 

Crashes at traffic calming sites were also investigated. Crashes for all vehicle types and crashes 

involving cyclists either decreased or remained at the same level at each of the sites. Overall, at the 

sites studied, crashes involving cyclists decreased from an average of 1.51 crashes per year to an 

average of 0.96 crashes per year (36%). The proportion of serious and fatal crashes also decreased. 

These results were not statistically significant. Data on changes in motor vehicle and cycle flows were 

not available. 

Hoenig (2000) separated cycle crashes from the overall crash statistics in a study of the effect of 

citywide traffic calming in Austria. Hoenig reported that in 1992, the city of Graz, with a population of 

240,000, adopted ‘Gentle Mobility’. This involved adopting a 30km/h speed limit for all residential 

areas except major roads. This lower speed limit applied to 75% of all roads in Graz (800km). A limit of 

50km/h applied to the remainder of the roads. In addition to an information campaign, the speed 

limits were closely enforced. The number of cycle crashes dropped in Graz following the introduction 

of the programme in 1992 (see figure 2.17), despite an increase in the number of cycle trips per day 

(see figure 2.18). 
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Figure 2.17 Cycle crashes per year in Graz, Austria (Hoenig 2000) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Cycle trips per day in Graz, Austria (Hoenig 2000) 

 
 

One major benefit of traffic calming, from a cycling perspective, is the reduction in motor vehicle 

speeds, which may not reduce the quantity of crashes but does reduce their severity. In the Cross- and 

Fisher study (1977), more than half of all fatalities were on roads with posted speed limits greater than 

35mph (56km/h), even though less than 20% of all collisions occurred in that fast traffic. 

The Danish Road Directorate publication (Jensen 2000b) recommended that a desirable speed for cars 

where cyclists and cars use the same traffic lanes is less than 40km/h. Figure 2.19 shows the severity 

of cyclists involved in crashes with cars at different speed limits (note that Danish cycle tracks are 

separated from both pedestrian and motor vehicle traffic by kerbs). It indicates that severe cycle 
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injuries were more likely on roadways without cycle tracks.  It also shows that crashes in higher speed 

limits cause more severe injuries to cyclists.  

Figure 2.19 Severity of cyclists at different speed limits (Jensen 2000b) 

 

 

The Bicycle Federation of America report (1993) showed a relationship between pedestrians’ and 

cyclists’ injuries and motor vehicle speeds in the United Kingdom. The report found that when vehicles 

travelling at 20mph (32km/h) struck pedestrians and cyclists, only about 5% were killed and most 

injuries were slight. At 30mph (48km/h), 45% were killed and many seriously injured. When cars were 

travelling at 40mph (64km/h), 85% of the pedestrians and cyclists were killed.  

The Wisconsin Department of Transportation (1998) also undertook a study on cyclists’ injuries and 

motor vehicle speeds between 1989 and 1998. The study showed that while the total injury rate was 

similar at all speed limits, fatal and severe injury crash rates increase dramatically where speed limits 

are higher (table 2.13). The study also showed that the cyclist injury rate was lower at a speed limit less 

than 40km/h.  
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Table 2.13 Injury rates by speed of motor vehicle, 1989–1998 (Wisconsin Department of Transportation 

1998) 

Crashes per 1000 cyclists Posted speed 

(km/h) 
Fatal injury rate Severe injury rate Total injury rate 

40– 48 3.0 150 941 

56–72 10.3 227 943 

88 63.2 356 953 

 

Turner et al (2006) derived crash prediction models for this report’s predecessor and found a 

pronounced ‘safety in numbers’ effect in the models. Using the crash prediction model for mid-block 

locations, generic motorist and cyclist volumes can be used to demonstrate the impacts on the 

expected crash rate of varying motor vehicle and cycle volumes. As shown in figure 2.20, an increase 

in the proportion of cyclists to the overall traffic volume causes an increase in expected crashes at 

mid-block locations, but the crash rate increases at a decreasing rate. That is to say, the crash rate per 

cyclist goes down as the cycle volume increases.  

Figure 2.20 Crash rate with constant motorist and changing cyclist volumes (Turner et al 2006) 

 

* AADT = annual average daily traffic 

Conversely, if the cycle volume remains constant but the motorist volume is decreased, the expected 

crash rate per cyclist decreases as well, as shown in figure 2.21. This type of modelling is discussed 

further in section 4.2. 
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Figure 2.21 Crash rate with constant cyclist and changing motorist volumes (Turner et al 2006) 

 

 

Jacobsen (2003) also found that the likelihood that a cyclist will be struck by a motorist is inversely 

proportional to the amount of cycling in the area, which was consistent across communities of varying 

size in North America and Europe. 
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3 Crash data 

3.1 Reporting of crashes 

3.1.1 Current reporting systems in New Zealand 

Knowing where and how cycle crashes occur on a network is an essential tool for improving the safety 

of cycling. Nationally, the only system that provides this information is the Ministry of Transport’s 

Crash Analysis System (CAS). This system includes crashes that occur on the road network and are 

reported to the police. No national system collects data for off-roadway cycle crashes, although some 

local authorities use crash reporting cards or online crash entries. Unfortunately, the reporting rate for 

these methods is also generally low. New systems have been introduced by some councils to improve 

reporting rates, such as Nelson/Tasman’s 0800 CYCLECRASH system (Parfitt and Kortegast 2005); 

however, these do not have coverage outside their regions. 

3.1.2 Under-reporting of cycle crashes 

Under-reporting occurs when a crash is not reported to the New Zealand Police and therefore is not 

entered into the CAS database. Turner et al (2006) found that the reporting rate for all traffic crashes in 

New Zealand is low, especially for crashes involving only minor injuries. It was stated that the ratio of 

reported cycle injury crashes to ambulance calls is approximately 54%. Since 1998, it has been a legal 

requirement in New Zealand for cycle crashes to be reported to the police. However, cycle crashes have 

not always been entered in the CAS database when a motor vehicle is not involved.  

Using cycle crash data for Christchurch for 2001 from CAS, ACC and St John’s Ambulance for 2001, 

Turner et al (2006) found that for every cycle crash reported in CAS, an additional 0.92 appeared in the 

St John and ACC databases. This study carried out a data-matching exercise to determine whether 

crashes appeared in duplicate (see figure 3.1). 
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Figure 3.1 Duplication in reporting of cycle crashes in Christchurch in 2001 

 

A study of cyclists with 1400 responses from adult cyclists and 3500 responses from school children 

found that the reporting rate for all cyclist collisions is approximately 21% (Christchurch Cycle Safety 

Committee 1991). 

Internationally, the reporting rate for crashes has also been found to be low. In Denmark, only about 

10% of crashes with slight personal injuries and 50% of the serious crashes involving cyclists are 

reported to the police. In the Netherlands, a comparison of hospital survey data and the reported crash 

data showed that reported crashes accounted for only 20% of all crashes by those interviewed (OECD 

1998). 

A study by the Royal Society for the Prevention of Accidents (2005) suggested that 60–90% of ‘bicycle 

only’ crashes go unreported. The under-reporting of cycle crashes could have an negative impact on 

encouraging people to cycle because fewer recorded crashes results in a low level of investment in 

cycle remedial schemes, thereby inadequately addressing risks to cyclists. However, currently no 

system is in place to test if all crashes in the UK are reported. 

A related study conducted on the under-reporting of cycle crashes in Sheffield, UK (Allatt 2006) 

concluded that 71% of all cycle crashes go unreported, especially those on off-roadway paths. Allat 

also noted a higher incidence of cycle-only crash under-reporting, which suggests that the full extent 

of crash patterns is not fully understood. Millar (2005) also reported that a very high proportion of 

crashes (41%) occurred off the roadway and many were not captured by crash databases, in this case, 

Scotland’s STATS19. A majority (57%) of the off-roadway crashes occurred on cycle tracks, forest tracks 

and mountain bike tracks. 
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3.1.3 Addressing crash under-reporting 

Normally, all collisions on our roads should be reported to the police. The police typically complete a 

collision report and submit it to the NZ Transport Agency (NZTA). However, it is estimated that only 

10% of cycle collisions are reported. 

In response to concerns about the under-reporting of cycle collisions through normal channels, the 

CCC initiated its own Cycle Hazard and Incident Reporting system, known as ‘CHIRP’. Freepost cards 

are available from cycle shops, council libraries, service centres etc. Cyclists can fill out the cards 

identifying collisions they have had or hazards they have identified. The CHIRP card is intended to be a 

simple method of capturing information on cycle collisions and hazards that would normally go 

unreported.  

The 0800CYCLECRASH system at Nelson was conceived as another way to get around the problem of 

under-reporting of cycle crashes. This enables the public to report injury and non-injury crashes which 

involve cyclists, as well as other related incidents that are not reported to or recorded by the police. 

The crash details received through this system are put into the CAS database as non-police reported 

crashes. Crashes are subsequently coded as injury, non-injury and conflict to differentiate them from 

actual collisions. So far, 184 crashes have been reported in the Nelson/Tasman region since the start 

of the 0800CYCLECRASH system. It is estimated that the 0800CYCLECRASH dataset contains a third of 

all cycle injury crashes in the Nelson region, and combining this dataset with CAS covers half of all 

cycle injury crashes (Turner 2006). 

The various reporting rates for cycle crashes are not conclusive as to the level of under-reporting in 

CAS; however, it is clear that the reporting rate for cycle crashes is low, especially for crashes that: 

 involve minor injuries 

 do not involve a motor vehicle 

 occur off the roadway. 
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3.2 On-roadway cycle crashes 

The CAS database is the primary database providing crash statistical information for on-roadway cycle 

crashes. Crashes recorded in this database are compiled when the police attend and complete a traffic 

crash report, which is then supplied to NZTA to enter the data.   

The crash data includes the location and time of crash, a description of the crash (which is later coded 

using ‘movement codes’) and crash causes. This database will be used as the sole source of crash data 

for cycle crashes occurring on-roadway in this study.   

To determine where reported crashes involving cyclists commonly occur in urban areas, figure 3.2 was 

produced for selected crash locations. 

Figure 3.2 Reported on-roadway cycle crash locations in New Zealand (1999–2003) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 shows that the majority of reported urban cyclist crashes (53%) occur at intersections. The 

remaining crashes occur at driveways and other mid-block locations. The proportion of crashes at each 

intersection type is affected by the frequency of that intersection type, the number of cyclists using 

each intersection type and the relative safety of cyclists at that intersection type. Figure 3.3 shows the 

proportion of all injury crashes involving cyclists (and pedestrians) at each urban intersection type. This 

shows that a disproportionate proportion of crashes at priority T-junctions involve cyclists compared 

with signalised intersections and roundabouts. 
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Figure 3.3 Proportion of injury crashes at different types of intersection 

 

3.3 Off-roadway cycle crashes 

The data available for off-roadway crashes is of a very limited nature. The chief contributing factor for 

this is the gross under-reporting of cycle crashes that occur on off-roadway cycle paths and tracks. A 

study conducted by Munster et al (2001) showed insufficient data related to off-roadway cycle crashes 

in New Zealand. The main reason for this is because it is not necessary for crashes involving cyclists 

only to be reported to the police. 

In many countries, it is common for cycle paths to be adjacent to roadways, even urban roads with low 

speed limits, whereas in New Zealand, on-roadway cycle lanes are more likely to be provided. This is 

because of New Zealand traffic legislation, where cyclists on segregated paths adjacent to roadways do 

not have priority over motor vehicles leaving and entering driveways and side roads, as is the case in 

many other countries. Therefore caution should be exercised when attempting to transfer the results of 

overseas studies to New Zealand conditions. 
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4 Data collection and modelling process 

4.1 Data collection 

4.1.1 General notes 

This section outlines the site locations, cyclist count data collection and crash data. Some of the data 

was collected in previous studies. Cycle count data was collected from Christchurch, Palmerston North 

and Hamilton. These cities were chosen because they have significant numbers of cyclists using their 

urban road network. 

Data on cycle counts was available in most centres, but generally, it was not in a suitable format for 

developing crash prediction models. To develop crash prediction models, detailed counts need to be 

available specifying the number of cyclists performing each turning and crossing manoeuvre. Such data 

enables various crash models to be developed for each type using particular flow combinations. 

For traffic signals, information was also available on non-flow factors such as number of opposing 

lanes, intersection depth and lane widths. This data was collected as part of a previous Beca study 

(Turner 2006). 

4.1.2 Christchurch City count data 

Cycle counts are collected by the CCC as part of its intersection count programme (this data is 

available in an electronic form) and in a separate cycle count programme. The separate cycle counts 

are generally more accurate than those collected simultaneously with motor vehicle counts. In the latter 

case, surveyors can be distracted by the volume of motor vehicles and miss cyclists. However, the 

separate cycle count data are not available in an electronic format. 

Additional cycle counts were collected in Christchurch. The counts were collected between 21 July and 

24 October 2003, and included over 1640 quarter-hour counts at traffic signals, roundabouts and 

mid-block locations. These counts were collected on weekdays and during the school term. 

For each intersection, the total duration of counts collected was one hour, with two quarter-hour 

counts collected in the morning and evening peaks. Longer duration counts were also collected at 

some sites to enable identification of daily and weekly trends. 

These longer counts were compared with those produced from the continuous count sites as discussed 

below in section 4.1.5. 

The cycle counts recorded were disaggregated into movement and approach. Thus for a regular four 

arm intersection, 12 cycle movements are possible. 

4.1.3 Hamilton City count data 

Mid-block cycle counts at 13 sites were carried out using the same methodology as for mid-block 

counts in Christchurch. Two half-hour counts in the morning and evening peaks were undertaken at 

each site on 9 and 11 December 2003. 
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4.1.4 Palmerston North City count data 

As specified above, cycle turning volume counts were collected at the same time as motor vehicle and 

pedestrian counts. Most of the available counts were collected during university and school holidays. 

We expect that the cycle counts collected underestimate the average cycle flows at each site. To take 

the lower holiday flows into account, correction factors were applied (section 4.1.5). 

4.1.5 Cycle correction factors 

Because the counts that were undertaken were of fairly short duration and did not cover long periods 

of each day, correction factors were required to determine the daily average flow. Also, cycle flows are 

highly variable depending on such things as the weather, school holidays, day of the week, types of 

cyclists using a route and other factors. Control counts using automatic detectors were established at 

six sites around Christchurch to build cycle profiles that could be used to factor the manual counts at 

the sites in the study. The daily cycle flow profile is shown in figure 4.1. 

Figure 4.1 Daily cycle profile flow by quarter hour 

 

Data at the control sites had been collected for a period of a year, but unfortunately for technical 

reasons, data from late September to the start of December 2003 was not available. Fortunately, few 

counts were undertaken within this period and those that were collected could be factored using the 

‘rough order’ day of the week and seasonal factors. The variation in cycle flows by week at the control 

sites is shown in figure 4.2. 
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Figure 4.2 Total daily cycle flow at control sites (June 2003–May 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

No continuous count data was available from either Palmerston North or Hamilton, so the factors 

produced for Christchurch were used to explain the seasonal trend. The assumption was that school 

and university holidays would coincide in all three centres. However, differences in weather between 

the cities could not be taken into account. Future studies should establish profiles for other cities. 
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4.2 Crash prediction model analysis 

4.2.1 Selecting functional form 

The process begins by listing the critical variables influencing the cycle crash rate, together with a clear 

procedure describing how they should be measured. Data is then collected for all such variables.  

Each variable is integrated into the functional form of the model using Hauer and Bamfo’s (1997) 

integrate–differentiate method. If the functional form does not match the relationship between the 

predictor variable and crashes, then the fit of the model is likely to be poor and the model cannot be 

trusted to predict the change in crashes for a change in the predictor variable. 

The integrate–differentiate method starts by first determining the empirical integral function. This is 

determined by the following steps (Hauer and Bamfo 1997): 

1. Sort the crash and predictor variable data by the predictor variable of interest, eg flow (Q). 

2. Determine the ‘bin width’ of each data point. The bin width in this example is the difference 

between the next higher and next lower flow divided by two. 

3. Calculate the ‘bin area’: this is the bin width multiplied by the crash count. 

4. Calculate the sum of all bin areas from the lowest value of the predictor variable up (see 

figure 4.3).   

Figure 4.3 Example showing the estimate of the integral function 

 

 

Assuming that a function f(Q) exists for the relationship between the predictor variable (Q) and crashes 

(A), then the definite integral of f(Q) from Q=0 to Q=x, (ie the area under the curve f(Q)) will be the 

integral function, F(Q). The summing of the bin areas to determine the empirical integral function is 

therefore an estimate of the integral function. 
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By inspecting the relationship in figure 4.3, the relationship can be inferred by comparing it with the 

graphs in figure 4.4,which has been taken from Hauer and Bamfo (1997). In the case of figure 4.3, the 

relationship is unclear. To determine which functional form may be suitable, the empirical integral 

function can be transformed for each applicable form. In the case of the power function, this can be 

done by plotting the natural log of flow against the natural log of the integral function (see figure 4.5).   

Figure 4.4 Corresponding functional form (f(x)) and integral function (F(X)) (Hauer and Bamfo 1997) 
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Figure 4.5 Transformed F(Q) indicating that a power function is the appropriate relationship 

 

Figure 4.5 shows a linear trend, indicating that the power function is the appropriate functional form. If 

a linear trend is not observed, then this functional form is inappropriate. 

Functional forms that have been used in this study are the power function (equation 4.1), the 

exponential function (equation 4.2) and Hoerl’s function (equation 4.3). 
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4.2.2 Determining a parsimonious variable set 

Once the functional form has been determined, generalised linear models are then developed using 

either a negative binomial or Poisson distribution error structure. Generalised linear models were first 

introduced to road crash studies by Maycock & Hall (1984), and extensively developed by others (eg 

Hauer et al 1989). These modelling techniques were further developed in the New Zealand context for 

motor vehicle only crashes by Turner (1995). 

Software has been developed in Minitab in order to fit such models (eg to estimate the model 

coefficients); this can be readily done, however, in many commercial packages such as GENSTAT, 

LIMDEP or SAS. 

Given the large number of possible variables for inclusion in the models, a criterion is needed to decide 

whether the addition of a new variable is worthwhile; this balances the inevitable increase in the 

maximum likelihood (L) of the data against the addition of a new variable (where p is the number of 

variables included in the model and n is the total number of observations in the sample set). We chose 

to use the popular Bayesian Information Criterion (BIC). We stop adding variables when the BIC reaches 

its lowest point. The BIC is given by equation 4.4. 

 BIC = (-2ln(L) + pln(n))/n (Equation 4.4) 

The model with the lowest BIC is typically the preferred model form. Addition of a new variable to a 

model always provides an improved fit, though this may be slight and therefore not reduce the BIC. 

Figure 4.6 illustrates the case where the BIC indicates that the parsimonious number of parameters is 

two. However, if the analyst considers that a three-parameter model includes an important variable not 

contained in the two-parameter model, then he/she could justifiably select the model with three 

parameters, depending on the outcome of quality of fit testing (see section 4.2.1.3). 

Figure 4.6 The Bayesian Information Criterion (BIC) for various numbers of parameters 
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Modelling every possible combination of variables to determine which has the lowest BIC would be 

time-consuming and inefficient. The process used instead involves all non-flow variables being 

modelled with the main flow variable. The variables in the resulting models that maximise the log-

likelihood (and therefore minimise the BIC) are then added together into a new model with more 

variables, and the BIC is tested. This is done for a number of combinations of variables (but not all 

combinations) as often the variables can be correlated, meaning that the ‘best’ two variables may not 

result in a better model. The correlation can be checked by producing a correlation matrix of the 

variables. 

4.2.3 Goodness of fit 

The BIC provides us with a model, but the model may still not fit the data well. The usual methods for 

testing goodness of fit of generalised linear models involve the scaled deviance G2 (twice the logarithm 

of the ratio of the likelihood of the data under the larger model to that of the data under the smaller 

model) or Pearson’s 2 (the sum of squares of the standardised observations). These do not work in our 

situation because of the ‘low mean value’ problem; our models are being fitted to data with very low 

means. This difficulty was first pointed out by Maycock and Hall (1984).  

Wood (2002) developed a ‘grouping’ method for overcoming the low mean value problem. The central 

idea is that sites are clustered and then aggregate data from the clusters is used to ensure that a 

grouped scaled deviance follows a 2 distribution if the model fits well. Evidence of a good of fit is 

provided by a p-value. If this value is less than 0.05, say, this is evidence at the 5% level that the model 

does not fit well. Software has been written in the form of Minitab macros in order to run this 

procedure. 

The goodness of fit is often calculated for a number of the better models as indicated by BIC. This is 

because although the best model, as indicated by the BIC, may have a crash rate that follows the 

modelled negative binomial distribution more closely at each combination of variables, some 

combination may make the model fit poorly (ie the true crash rate is very different from our 

prediction). The quality of fit would indicate that this is a poorly fitting model. As the goodness of fit is 

the best overall arbiter of the worth of the model, a model with a poorer BIC (but a better fit) may be 

selected as the preferred model. 
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4.2.4 Model interpretation 

Once models have been developed, in some simple cases, the relationship between crashes and 

predictor variables can be interpreted. Caution should always be exercised when interpreting 

relationships within some multiple predictor variable models, as two or more variables can be highly 

correlated. However, the modelling process described in the previous sections usually means that 

variables in the ‘preferred’ models are not highly correlated because the method acknowledges that 

adding a variable correlated to those already in an existing model does not improve the fit of the 

model compared to the addition of important non-correlated variables. Likewise, functional forms that 

deviate from a power function are also difficult to interpret. In these situations, it is always best to plot 

the relationship. 

In models with a power function form where the variables are not correlated, an assessment of the 

relationship can be carried out. For a typical model with a power-function form and two continuous 

variables (such as flows or speeds), the model takes the form shown in equation 4.5. 

 21
210
bb xxbA   (Equation 4.5) 

where: 

A   = annual mean number of crashes; 

x
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  = continuous flow or non-flow variables 
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model parameters.   

In this model form, the parameter b0 acts as a constant multiplicative value. If the number of reported 

injury crashes is not dependent on the values of the two predictor variables (x1
 
and

 
x2), then the model 

parameters b1 and b2 are zero. In this situation, the value of b0 is equal to the mean number of crashes. 

The value of the parameters b1 and b2 indicate the relationship that a particular predictor variable has 

(over its flow range) with crash occurrence. Five types of relationship exist for this model form, as 

presented in figure 4.7 and discussed in table 4.1. 

Figure 4.7  Relationship between crashes and predictor variable x for different model exponents (b1) 
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Table 4.1 Relationship between predictor variable and crash rate 

Value of exponent Relationship with crash rate 

bi >1 For increasing values of the variable, the number of crashes will increase at 

an increasing rate 

bi = 1 For increasing values of the variable, the number of crashes will increase at 

a constant (or linear) rate 

0< bi  <1 For increasing values of the variable, the number of crashes will increase at 

a decreasing rate 

bi = 0 The number of crashes  will not change with increasing values of the 

variable 

bi <0 For increasing values of the variable, the number of crashes will decrease 

 

Generally, models of this form have exponents between bi = 0 and bi = 1, with most flow variables 

having an exponent close to 0.5, ie the square root of flow. In some situations, however, parameters 

have a value outside this range.   

In the case of models including a covariate (here, discrete variables with a small number of 

alternatives), a multiplier (Ф) for different values of the variable is produced, and it is easy to interpret 

the relationship. This factor indicates how much higher (or lower) the number of crashes is if the 

feature is present. A factor of 1 indicates no effect on crash occurrence.  
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5 On-roadway crash models 

5.1 Introduction 

The following sections present the crash prediction models developed for the following cyclist crash 

types: 

 mid-block crashes 

 mid-block turning crashes 

 mid-block non-turning crashes 

 signalised crossroad product of link 

 signalised crossroad ‘right turn against’ crashes 

 other signalised crossroad crashes. 

For each crash location, models were developed separately for crashes involving cyclist v motor vehicle 

interactions and crashes involving all motor vehicle classes. All crash types are included in both 

datasets. The models were developed in accordance with the process outlined in chapter 4. 

5.2 Mid-block crashes 

5.2.1 Cyclist v motor vehicle crashes 

Ten models were developed for this crash type before settling on a preferred model (see appendix A 

for the models calculated for this and all other crash types). Appendix B outlines the full set of 

predictor variables and model parameters that were calculated for each of the ten models. Equation 5.1 

presents the preferred model form, which includes the total two-way flow for both motor vehicles and 

cyclists, the length of the mid-block section and a covariate for the presence of a flush median.   

 MEDIANFLUSHUCMN LCQA  45.016.025.0
0 05. -2101  (Equation 5.1) 

where: 

AUCMN0 = annual number of mid-block crashes involving cyclists only (subscript denotes 

model type – see Appendix C); 

Q  = total two-way motor vehicle flow for the link 

C  = total two-way cycle flow for the link 

L  = length of mid-block in kilometres 

ФFLUSHMEDIAN = factor to multiply the crash prediction by if a flush median is present. This factor is 

ФFLUSHMEDIAN = 0.63.  
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Equation 5.1 implies that the presence of a flush median mid-block can reduce cyclist crashes by 37%. 

The safety benefit provided by flush medians to cyclists may be caused by the extra width that flush 

medians provide to motorists to avoid cyclists travelling on the side of the carriageway.  

Equation 5.1 has a p-value of 0.05, indicating a model with good fit (values below 0.05 indicate a poor 

model). The goodness of fit can be illustrated by comparing the predicted mean number of crashes and 

the reported number of crashes for ‘grouped’ (approach) data (as outlined in Wood (2002)). Figure 5.1 

presents this comparison between ‘grouped’ reported and predicted crashes for the preferred model. A 

poor fit is illustrated by a group that has different predicted and reported numbers of crashes (where 

the plotted point is furthest from the 45 degree line). If we have no evidence of poor fit, this gives us 

valid grounds for increased confidence in the model. Figure 5.1 indicates a generally good fit for most 

approach groups. However, the model appears to underestimate crashes at sites with higher traffic 

volumes. 

Figure 5.1 Relationship between predicted and reported crashes for AUCMN0 

 

 

 

 

 

 

 

 

 

 

 

 

 

A number of other models were developed but were less than ideal. These included non-flow variables 

with significant relationships, such as: 

 effective width of the kerbside lane, including the vehicle lane and cycle lane, where present 

 the presence of a cycle lane 

 mean motor vehicle speed along each mid-block section. 
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The models show that crashes increase with increasing traffic volume, mid-block length, effective 

width and mean motor vehicle speed. One model suggests that the presence of a cycle lane increases 

crashes by 21%, as shown in equation 5.2, which includes a covariate for the presence of a cycle lane.   

 CYCLANEUCMN LCQA  38.019.025.0
0 11.7 -310  (Equation 5.2) 

where: 

AUCMN0  = annual number of mid-block crashes involving cyclists only (subscript denotes 

model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

C  = total two-way cycle flow for the link 

L  = length of mid-block in kilometres 

ФCYCLANE = factor to multiply the crash prediction by if a cycle lane is present. This factor is 

ФCYCLANE = 121. 

The increase in the crash rate with the presence of a cycle lane is counter-intuitive and counter to 

other research. The data used in the crash prediction model, however, is biased, which complicates the 

outcome. High crash frequency sites have historically been a high-priority location for cycle lane 

construction, so it is unlikely that sites with cycle lanes and sites without cycle lanes will have the same 

background crash rate. The before-and-after studies using the same locations with and without cycle 

lanes, as discussed in section 5.9, remedy this problem. 
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5.2.2 All crashes 

Ten models were developed for this crash type before settling on a preferred model. Appendix B 

outlines the full set of predictor variables and model parameters that were calculated for each of the 

10 models. Equation 5.3 presents the preferred model form, which includes the total two-way flow for 

motor vehicles, the length of the mid-block section and a covariate for parking prohibition.   

 NOPARKINGUAMN LQA  30.084.0
0 36. -4102   (Equation 5.3) 

where: 

AUAMN0  = annual number of mid-block crashes involving all vehicle types (subscript denotes 

model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

L  = length of mid-block in kilometres 

ФNOPARKING = factor to multiply the crash prediction by if the mid-block length does not allow 

parking. This factor is ФNOPARKING = 0.25. 

 

Equation 5.3 implies that all crashes occurring in mid-blocks can be reduced by 75% by removing 

parking from mid-block sections. The reduction in crashes by removing parking may be caused by 

removing conflicting movements of the parking manoeuvre with the carriageway traffic.    

Equation 5.3 has a p-value of 0.17, indicating a model that fits well. Figure 5.2 presents the 

comparison between the predicted and reported number of crashes for the preferred model. Figure 5.2 

indicates a generally good fit for most approach groups. However, the model appears to underestimate 

crashes at sites with higher traffic volumes. 
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Figure 5.2 Relationship between predicted and reported crashes for AUAMN0 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Mid-block turning crashes 

5.3.1 Cyclist v motor vehicle crashes 

For this crash type, 18 models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.4 presents the preferred model form, which 

includes the total two-way flow for motor vehicles, the length of the mid-block section and a covariate 

for the presence of a flush median.   

 MEDIANFLUSHUCMN LQA  54.019.0
1 50. -2103  (Equation 5.4) 

where: 

AUCMN1  = annual number of mid-block turning crashes involving cyclists v motor vehicles 

(subscript denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

L  = length of mid-block in kilometres 

ФFLUSHMEDIAN = factor to multiply the crash prediction by if a flush median is present. This factor is: 

ФFLUSHMEDIAN 
= 0.48.  

Equation 5.4 suggests that the presence of a flush median mid-block can reduce interactions between 

turning cyclists and motor vehicles by more than 50%. Again, this reduction may be a result of the 

extra width that flush medians afford to motorists to avoid cyclists travelling on the side of the 
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carriageway. The flush median also allows right-turning traffic, both cycles and motor vehicles, to be 

separated from through-traffic, further reducing the likelihood of interactions. 

5.3.2 All crashes 

For this crash type, nine models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.5 presents the preferred model form, which 

includes the total two-way flow for motor vehicles, the length of the mid-block section and a covariate 

for parking prohibition.   

 NOPARKINGUAMN LQA  10.056.0
1 37. -3101  (Equation 5.5) 

where: 

AUAMN1  = annual number of mid-block turning crashes involving all vehicle types (subscript 

denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

L  = length of mid-block in kilometres 

ФNOPARKING = factor to multiply the crash prediction by if the mid-block length does not allow 

parking. This factor is ФNOPARKING = 0.25.  

Equation 5.5 implies that all turning crashes occurring in mid-blocks can be reduced by 75% by 

removing parking from mid-block sections, which is very similar to equation 5.3. Equation 5.5 has a p-

value of 0.09, indicating a model with good fit. 

Figure 5.3 presents the comparison between the predicted and reported number of crashes for the 

preferred model. Figure 5.3 indicates a generally good fit, except for higher crash rates. 
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Figure 5.3 Relationship between predicted and reported crashes for AUAMN1 

 

5.4 Mid-block non-turning crashes 

5.4.1 Cyclist v motor vehicle crashes 

For this crash type, ten models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.6 presents the preferred model form, which 

includes the total two-way flow for motor vehicles, cyclists, and the length of the mid-block section.   

 27.050.031.0
2 28. LCQAUCMN  -4102   (Equation 5.6) 

where: 

AUCMN2  = annual number of mid-block non-turning cyclists v motor vehicle crashes 

(subscript denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

C  = total two-way cycle flow for the link 

L  = length of mid-block in kilometres.  

Equation 5.6 indicates that crashes increase with increasing motor vehicle flow, cycle flow and mid-

block length. Equation 5.6 has a p-value of 0.31, indicating a model with good fit. 

Figure 5.4 presents the comparison between the predicted and reported number of crashes for the 

preferred model and indicates a generally good fit. 
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Figure 5.4 Relationship between predicted and reported crashes for AUCMN2 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 All crashes 

For this crash type, nine models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.7 presents the preferred model form, which 

includes the total two-way flow for motor vehicles, the length of the mid-block section and a covariate 

for parking prohibition.     

 NOPARKINGUAMN LQA  42.097.0
2 39. -5104  (Equation 5.7) 

where: 

AUAMN2  = annual number of mid-block non-turning crashes involving all vehicle types 

(subscript denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the link 

L  = length of mid-block in kilometres 

ФNOPARKING = factor to multiply the crash prediction by if the mid-block length does not allow 

parking. This factor is ФNOPARKING = 0.25. 

Equation 5.7 implies that all crashes occurring mid-block can be reduced by 75% by removing parking 

from mid-block sections, which is very similar to both equations 5.2 and 5.4. Equation 5.7 has a p-

value of 0.17, indicating a model that fits well. 
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Figure 5.5 presents the comparison between the predicted and reported number of crashes for the 

preferred model and indicates a generally good fit, except for higher crash rates. 

Figure 5.5 Relationship between predicted and reported crashes for AUAMN2 
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5.5 Signalised crossroad product of link 

5.5.1 Cyclist v motor vehicle crashes 

For this crash type, five models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.8 presents the preferred model form, which 

includes the total two-way flow for motor vehicles and cyclists, and a covariate for the presence of a 

cycle lane.     

 CYCLANEUCXT CQA  03.017.0
0 16.6 -310  (Equation 5.8) 

where: 

AUCXT0  = Annual number of signalised crossroad crashes involving cyclists only (subscript 

denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the approach 

C  = total two-way cycle flow for the approach 

ФCYCLANE = factor to multiply the crash prediction model by if a cycle lane is present. This 

factor is ФCYCLANE = 1.41.  

Equation 5.8 implies that the presence of a cycle lane at a signalised intersection can increase crashes 

involving cyclists by 41%. The dataset used to build this model only included 21 crashes, which may 

indicate that the model does not represent the situation well. The cycle flow has a very low coefficient, 

which suggests that changes in cycle flow have little effect on crashes. Equation 5.8 has a p-value of 

0.25, indicating a model with good fit. 

Figure 5.6 presents the comparison between the predicted and reported number of crashes for the 

preferred model and indicates a generally good fit, except for higher crash rates. Note that the crash 

rate in this figure (and in figure 5.7) give the crash rate over three years rather than over five years, as 

is the case for the other models. 
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Figure 5.6 Relationship between predicted and reported crashes for AUCXT0 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.2 All crashes 

For this crash type, four models were developed. Appendix B outlines the full set of predictor variables 

and model parameters that were calculated. Equation 5.9 presents the preferred model form, which 

includes only the total two-way flow for motor vehicles.     

 67.0
0 71. QAUMXT  -4103  (Equation 5.9) 

where: 

AUMXT0  = annual number of crashes involving motor vehicles at signalised crossroads 

(subscript denotes model type – see appendix C) 

Q  = total two-way motor vehicle flow for the approach. 

Equation 5.9 implies that motor vehicle crashes at signalised intersections increase with increasing 

motor volumes. Equation 5.9 has a p-value of 0.05, indicating a model with good fit. 

Figure 5.7 presents the comparison between the predicted and reported number of crashes for the 

preferred model and indicates a generally good fit, except for higher crash rates. 
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Figure5.7 Relationship between predicted and reported crashes for AUMXT0 

 

5.6 Signalised crossroad ‘right turn against’ crashes 

The dataset for ‘right turn against’ crashes involving cyclists that occurred at signalised crossroads, 

contained only five crashes. A dataset containing less than 20 crashes is thought to be insufficient to 

build crash models, so no models can be presented for this crash type.  

5.7 Other signalised crossroad crashes 

The dataset for other crashes involving cyclists that occurred at signalised crossroads contained only 

16 crashes. A dataset containing less than 20 crashes is thought to be insufficient to build crash 

models, so no models can be presented for this crash type.  
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5.8 Summary 

This section summarises the models for each crash type. The typical mean annual numbers of reported 

injury crashes involving cyclists can be calculated using volume counts, and data for various non-flow 

variables, such as visibility, speed and geometry, and the crash prediction models in table 5.1. The 

total number of crashes can be predicted by summing the individual predictions for each crash group. 

Where traffic volumes or non-flow variable data are unavailable then the total number of crashes can 

be estimated using the model outlined in chapter 4. However, we strongly recommend the use of the 

crash models by type, particularly where volumes of cyclists are likely to be high. 

Table 5.1 Crash prediction models 

Crash type 
Equation (crashes per approach) 

Error 

structure 
GoFa 

Cyclist mid-block 

crashes 

16.025.0
0 05. CQAUCMN  -2101  

MEDIANFLUSHL  45.0
 

63.0MEDIANFLUSH  

NBb  

k=1.7c 
0.05 

All mid-block 

crashes 

30.084.0
0 36. LQAUAMN  -4102  

NOPARKING  

25.0PARKINGNO  

NB  

k=1.4 
0.17 

Cyclist mid-block 

turning crashes 

  LQAUCMN
19.03

1 1050.3  

NFLUSHMEDIA  

48.0NFLUSHMEDIA  

NB 

k=1.3 
 

All mid-block 

turning crashes 

10.056.0
1 37. LQAUAMN  -3101  

NOPARKING  

 25.0PARKINGNO  

NB  

k=0.8 
0.09 

Cyclist mid-block 

non-turning 

crashes 

50.031.0-4
2 1028.2 CQAUCMN 

27.0L  
Poisson 0.31 

All mid-block non-

turning crashes 

 

42.097.0
2 39. LQAUAMN  -5104  

NOPARKING  

 25.0PARKINGNO  

NB  

k=1.6 

0.17 

 

Cyclist signalised 

crossroad product 

of link 

  50.017.03
0 1016.6 CQAUCXT  

CYCLANE  

41.1CYCLANE  

Poisson 0.25 

All signalised 

crossroad product 

of link 

67.0
0 71. QAUMXT  -4103  Poisson 0.05 

Notes to table 5.1: 

a GoF (Goodness of Fit statistic) indicates the fit of the model to the data. A value of less than 0.05 indicates a 

poor fit, whereas a high value indicates a good fit. 

b NB = negative binomial 

c k is the gamma distribution shape parameter for the negative binomial distribution. 
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5.9 Empirical Bayes analysis 

The empirical Bayes method is a ‘hybrid’ approach that uses elements of both the conventional and 

Bayesian methods. It is not considered controversial and, in a sense, is not a true Bayesian method, as 

it does not rely completely on a subjective evaluation of the prior distribution. 

In crash prediction modelling (where crashes have a negative binomial distribution), the prior 

distribution is generated using data from a number of typical sites, the conventional crash prediction 

models or base models. This method allows both sources of information, ie typical crash rates for the 

population of sites and the local crash history, to be used in generating crash predictions.  

The empirical Bayes method detailed in this section relies on a number of assumptions: 

 The annual crash counts at a particular site are Poisson distributed about a constant true crash rate 

(m) over the crash period. 

 The crash counts for each year of the crash period are independent of each other. 

 The true crash rate (m) varies from site to site. 

 The prior distribution of m is described by a gamma probability density function. 

Further details on this method can be found in Persuad and Lyon (2006). 

The before-and-after study (Empirical Bayes analysis) was undertaken for mid-block sections where 

cycle lanes had been installed, and where the ‘after’ period was at least five years. Forty-four of the 97 

sections used in the cross-sectional study met these criteria. An empirical Bayes method was used in 

this analysis to enable ‘regression to the mean’ to be taken into account in the comparison. Based on 

the crash history and adjusting for regression to the mean, it was estimated that 46 crashes would 

occur along the 44 road sections in the five-year ‘after’ period, if no treatment (ie cycle lane addition) 

was undertaken. It was assumed that no other changes (raised median, parking, change in roadway 

width, etc) occurred for these sections. 

Based on the observed ‘after’ period and again adjusting for regression to the mean, it was estimated 

that the crash frequency had dropped to 41.6 crashes in the five years following installation of the 

cycle lanes (treatment). This corresponds to a drop of 4.4 reported injury crashes in the ‘after’ period 

resulting from the installation of cycle lanes, or a 10% reduction. However, it should be noted that a 

number of the cycle lanes observed in the study were substandard, and the rate of reduction is likely to 

be greater for high standard facilities. 
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6 Off-roadway cyclist safety 

6.1 Footpath safety 

Certain elements of off-roadway cycle paths have been recognised as having potentially higher crash 

risks, particularly, where they intersect with motor vehicle facilities and where motor vehicle traffic 

exits from driveways over footpaths.  Shared-use footpaths have been singled out as being areas of 

high risk because of the high frequency of crossings and the potential for limited visibility.  These risks 

are further compounded by New Zealand road rules requiring cyclists to give way to pedestrians and 

motor vehicles on side-roads. A wide amount of data compares the safety of cycling on the footpath 

with that of riding on any other facility, ranging from 1.8 to 2.5 times more dangerous than cycling on 

the roadway, and 8 to 11 times more dangerous than cycling on an off-roadway track (these rates may 

not necessarily account for the number of cycle crossings, the volume of pedestrians, or the available 

width on and adjacent to the path or track).  Given the research, the provision of shared-use footpaths 

alongside roadways is not recommended. 

6.2 Cycle track safety 

Cycle tracks have dangers somewhat similar to footpaths, although the nature of crossings along 

tracks can lead to fewer potential conflicts. These conflicts arise principally with: 

 motor vehicles 

 pedestrians 

 mobility scooters and wheelchairs 

 other cyclists. 

In order to reduce these conflicts and make an off-roadway path safer, the three most important 

factors to accommodate appear to be: 

 the number of motor vehicle crossings on the path, their motor vehicle volume, and the priority at 

each crossing 

 the visibility and pavement marking at crossings, corners and underpasses 

 the width of the off-roadway path. 

In the case of motor vehicle crossings (primarily side-roads instead of driveways) on a cycling facility 

adjacent to a roadway, it appears two preferable treatments are possible: either eliminating the cycle 

path in favour of a cycle lane, or a ‘bent-out’ treatment that provides motor vehicle space between the 

cycle crossing and the adjacent intersection (refer to section 2.5.1 and figure 2.6). For all cycle 

crossings, it is important to clarify priority to all users, be it for motor vehicles or cyclists; giving 

cyclists no priority appears to cause the least confusion but is not always the preferential treatment. In 

high-traffic or high crash locations, grade-separated crossings should be considered, as they lead to a 

strong decrease in crashes when fully used. 
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Figure 6.1 Good practice: mid-block signalised cycle path crossing (Christchurch) 

 

Off-roadway paths should further be designed with sufficient forward visibility for their users, 

considering all users from slow-moving pedestrians to mobility scooters to high-speed experienced 

cyclists. Path visibility is critical at cycle crossings, underpasses and corners but should be considered 

for the entire length of a facility (such as in figure 6.1). Driveways present a major hazard for cyclists, 

as visibility sightlines are often not provided in their construction. This lack of visibility is compounded 

by the lack of on-site turning within properties, creating the need for motor vehicles to reverse out 

over the shared footpath. 

Proper pavement marking and signage is also critical along paths to segregate potentially conflicting 

traffic flows, especially at the limited visibility locations discussed previously. Appropriate markings 

include those to: 

  divide opposing directions of traffic  

 separate user groups of differing speeds (for example, pedestrians, roller-skaters and cyclists; see 

figure 6.2)  

 designate priority at pathway intersections  

 provide advanced warning of unexpected geometric changes (curves, underpasses, intersections 

etc). 

Finally, an off-roadway path should have a design width that can accommodate the expected user mix 

and allow for safe passing by users at different speeds (see figure 6.3). A ‘clear zone’ on both sides of 

the path should also be considered to allow for informal passing and recovery for errant cyclists. 
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Figure 6.2 Good practice: wide, well-delineated shared-use track (Wellington) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Good practice: well-delineated segregated cycle path (Tauranga) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Cycle safety: reducing the crash risk 

 

80 

Additional considerations from overseas research include: 

 the effective distance between the off-roadway path and any adjacent roadway  

 the posted speed limit and the number of lanes on this adjacent roadway 

 the extent to which cyclists using the off-roadway path need to cross into motor vehicle traffic (for 

instance, in advance of intersections) 

 the level of conflicting pedestrian traffic 

 proper footpath maintenance. 
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7 Treatment hierarchy 

The UK’s Institution of Highways and Transportation (IHT 1996) proposed a ‘Five-Step Hierarchy’ of 

measures to improve safety for cyclists in this order:  

1. reducing motor vehicle traffic volume 

2. reducing motor vehicle traffic speeds 

3. intersection treatment and traffic management 

4. reallocation of carriageway/corridor space (eg on-roadway cycle lanes) 

5. separating cycle facilities (eg off-roadway cycle tracks). 

The research presented or referenced in this report indicates that safety benefits can be gained from all 

five elements of the treatment hierarchy, and in most cases, we can quantify their actual safety impact.  

Perhaps the most continuous area is the safety of off-roadway or segregated facilities. Each element of 

the hierarchy is discussed in turn below.  

It is clear from the research that conditions for cycling can be improved by reducing motor vehicle 

volumes (measure 1) and speeds (measure 2) as this reduces the exposure to crashes (with less traffic) 

and the risk of more severe crashes (with lower speeds). In addition, the research by Turner et al 

(2006) indicates that a ‘safety in numbers’ effect occurs when cycle volumes grow. While cycle crashes 

increase as cycle volumes grow, the individual risk to cyclists reduces significantly. Research 

referenced in this report allows the actual effect of volume and speed changes to be quantified.  

Improvements to intersections and traffic management (measure 3) can have similarly marked effects 

on cycle crash rates. For example, research findings quoted in Elvik and Vaa (2004) indicate that the 

addition of an advanced limit line for cyclists is expected to lead to a 27% reduction in cyclist crashes 

and a 40% reduction in all crashes. Benefits are also provided for other intersection treatments in this 

publication. This project did not provide a reduction factor for intersection cycle facilities and the crash 

modelling indicated that the number of cycle crashes may indeed increase; further research with a 

larger sample set is required to provide a specific result for New Zealand. Traffic management 

strategies like traffic calming have been shown to reduce cyclist crashes by 36% (Davies et al 1997) and 

total crashes by 40% (Zein 1997). 

Regarding the reallocation of carriageway space (measure 4), different measures can lead to a 

reduction cycle crash rates. Addition of a flush median can reduce cycle crash rates by 37–50% (models 

UCMN0 and UCMN1), while removal of on-street parking was found to reduce crash rates by up to 75% in 

three models (UAMN0, UAMN1 and UAMN2). The research also indicates that the addition of on-roadway 

mid-block cycle facilities can result in a reduction in all crashes of around 10%, although this result 

was not conclusive, as the crash models did indicate an increase in crashes. Elvik and Vaa (2004) 

indicate that the benefit may be higher, possibly as high as 35%. Further work is required, using a 

larger sample set and more variables to confirm this result.     

The safety impact of off-roadway cycle paths (measure 5) varies considerably. Most of the research 

indicates that shared footpaths with multiple access and road crossings is less safe than on-roadway 

facilities, and that such off-roadway facilities should be avoided. While no relevant New Zealand 

research has been done on this topic, this is likely to be even more of a safety concern in New Zealand, 
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where the road user rules require cyclists to give way to motor vehicles crossing these off-roadway 

facilities. This is not the case in many of the countries where other research has been undertaken, and 

this research still indicated an increase in crashes. Where cycle paths are not alongside roadways 

and/or have very few accesses and side-road crossings, the research has indicated they are safer than 

on-roadway facilities. The design of such facilities (eg width, particularly if shared with pedestrians) 

and the design of any vehicle crossings (eg who has priority and how the side-road is controlled) is 

critical.   
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8 Conclusion 

8.1 Summary 

8.1.1 Methodology 

This study set out to quantify the safety benefit to cyclists from various cycle safety improvement 

measures, including cycle lanes, improving intersections for cyclists, off-roadway cycle paths, speed 

reduction (or traffic calming) measures and reducing traffic volumes. These measures fit within the 

five-step hierarchy of cycle improvements proposed by the IHT. Measures at the top of the hierarchy 

are typically applied first, depending on the type of site being treated.  

1. reducing motor vehicle traffic volume 

2. reducing motor vehicle traffic speeds 

3. intersection treatment and traffic management 

4. reallocation of carriageway/corridor space (eg on-roadway cycle lanes) 

5. separating cycle facilities (eg off-roadway cycle tracks). 

Data was collected from three cities, Christchurch, Hamilton and Palmerston North, to examine the 

effect of cycle facilities and other on-roadway features. Two methods, before-and-after studies and 

crash prediction modelling (using generalised linear modelling), were used to quantify the effects of 

traffic volume (refer to Turner et al 1996), on-roadway mid-block cycle facilities, intersection cycle 

facilities, flush medians, and presence and use of parking. The safety benefits of other factors were 

assessed from international literature, including off-roadway facilities and vehicle speed.      
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8.1.2 Safety of on-roadway cycle facilities 

Most of the effort in this research project went into quantifying the safety effects of on-roadway 

features such as cycle lanes, flush medians and parking on cycle-related crashes and all crashes. Table 

5.1 shows the crash prediction models that were developed for mid-block routes and intersections. 

The following discussion summarises the key findings that can be inferred from the crash prediction 

models.  

Traffic volume (Q) was found to be an important variable in all models and cycle volume (C) was an 

important variable in all ‘cycle v motor vehicle’ crash types. Length (L) is also an important variable in 

mid-block crashes, with safety improving as the lengths between major intersections (roundabouts and 

traffic signals) increases.   

The presence of a flush (or painted) median (indicated by the subscript FLUSHMEDIAN) reduces cycle-

related crashes for mid-blocks (by 37%), particularly where turning traffic is present (52%), according to 

the models. This is likely to be a result of the extra space that cyclists and motor vehicles have to take 

evasive action if potential for a collision arises. The availability of space is a key issue for cyclists, 

which is reflected in this result. This, of course, is difficult to achieve on busy arterial roads, and 

providing (more) room for cyclists is a trade-off that needs to be made in balance with the needs of 

other road users. Where cycle volumes are high and carriageways are typically wide, as occurs in 

Christchurch, this is not as difficult to justify as it is in cities like Auckland, where carriageways and 

lane widths are typically narrower and cycle volumes are lower. 

The absence of parking is a key factor for models looking at all mid-block crashes. The overall 

reduction is 75%, indicating that parking does have a major effect on crash rates. Routes that have low 

parking usage rates (ie where a parking lane is marked but the proportion of parking spaces that are 

used is low) have crash rates between 30% and 120% higher than sections with average parking rates, 

although this was a less crucial factor (these models are provided in appendix A). This could be 

because cyclists use the parking shoulder for most of their trip but then have to pull out into the traffic 

lane to go around parked cars. This movement may catch motor vehicle drivers unawares, leading to a 

potential conflict. This finding needs further research to confirm the behaviour of cyclists and motor 

vehicles. 

The presence of a cycle lane does not feature as a key discrete variable for the mid-block sections, 

where the presence of a flush median and/or ‘no parking’ appear to be more important variables. 

However, crash prediction models have been developed that include the presence of a cycle lane (see 

appendix A) and it was found that crash rates were typically 20 to 30% higher on those routes with 

cycle lanes. This did not compare well with overseas research, which typically shows a reduction in all 

crashes. A before-and-after study found that a 10% reduction in all crashes was found at those sites 

that have had cycle lanes installed. The difference is likely to be the result of an increase in cyclists as a 

result of the cycle lane going in compared with untreated sites (we only had ‘after’ cycle counts) and a 

bias toward treating routes which had a history of cycle crashes. Even the crash reduction of 10% 

seems low compared to overseas research; this may be caused by the increase in cyclists and because 

some of the older cycle lanes included in the study are below standard, particularly in terms of width. 

The traffic signal model also showed that cycle facilities increased the crash rate. Further research is 

being undertaken on the effect of various cycle facilities at intersections.            
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The overseas research indicates that the number of crashes decreased when on-roadway cycle lanes 

were installed; the reduction of cyclist crashes generally varied from 35% to 50%, although one source 

did report an increase in cyclist crashes. Total (cycle and motor vehicle) crashes were found to decline 

by 6.5% to 35%. This compares with the 10% of ‘all crashes’ that are saved in this study. It was also 

found that narrower cycle lanes were three to four times less safe than wider cycle lanes, which maybe 

a factor in several of the sites used in this study. 

8.1.3 Safety of cycle paths 

Data on the safety aspects of off-roadway facilities is not readily available in New Zealand. The data 

sources that are available internationally are presented. The factors that should be considered when 

selecting either on- or off-roadway facilities are discussed. 

Studies conducted to compare the crash rates for on- and off-roadway cycling have shown that 

footpaths are much less safe than other on- or off-roadway cycling options, with data indicating that 

footpath cycling is 1.8 to 2.5 times more dangerous than cycling on the roadway, and 8 to 11 times 

more dangerous than cycling on an off-roadway track (with very few or no driveways or vehicle 

crossings). In Denmark, before-and-after studies of off-roadway cycle paths were undertaken over a 

period of three years. The results showed that cyclist casualties increased 48% following introduction 

of off-roadway cycle paths. In addition, vehicles, moped riders and pedestrians suffered more crashes, 

with an overall rise in casualties of 27%. These footpath dangers arise principally from conflicts with 

motor vehicles, pedestrians and other cyclists. 

In order to reduce these conflicts and make an off-roadway path safer, the three most important 

factors to accommodate appear to be: 

 the number of motor vehicle crossings on the path and the priority at each crossing, 

 the visibility and pavement marking at crossings and underpasses, and 

 the width of the off-roadway path. 

The research also indicated that better footpath maintenance could improve the safety of footpath 

cyclists, as well as the distance from adjacent roadways, and the speed limit and number of lanes on 

adjacent roadways. 

A British study analysed five types of cycle path crossings with minor roads and found that priority at 

such crossings was a major hazard for cyclists, followed by side-road vehicles blocking the cycle path. 

Cyclists remaining on the major road (as opposed to the off-roadway path) had fewer problems at the 

junctions with minor roads. 
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8.1.4 Speed and volume reduction measures 

The Danish Ministry of Transport recommends that a desirable speed for vehicles where cyclists and 

vehicles use the same traffic lanes is less than 40km/h. This is supported by a number of other 

overseas studies. A Bicycle Federation of America report (1993) found that when vehicles travelling at 

32km/h strike pedestrians and cyclists, only about 5% are killed and most injuries are slight. At 

48km/h, 45% are killed and many are seriously injured. When cars travel at 64km/h, 85% of 

pedestrians and cyclists are killed.  Cross and Fisher (1977) found that more than half of all cycle 

fatalities occurred on roads with posted speed limits greater than 35mph (56km/h) even though less 

than 20% of all collisions occurred on roads with higher speeds. The Austrian city of Graz adopted a 

30km/h speed limit for all residential areas except major roads (about 75% of all roads in Graz or 800 

km), resulting in the number of cycle crashes dropping despite the number of cycle trips per day 

increasing. These studies support the view that reducing speed does improve cycle safety 

New Zealand research by Turner et al (2006) has found that the crash rate per cyclist reduces as the 

cycle volume increases: the ‘safety in numbers’ effect. Conversely, if the cycle volume remains constant 

but the motorist volume is decreased, the expected crash rate per cyclist decreases and vice versa. This 

research can be used to assess the safety effects of changes in both cycle and motor vehicle volumes 

in the New Zealand context, either up or down, for urban mid-block sections, traffic signals and 

roundabouts. 

 

 

 

8.2 Areas for future research 

The following areas should be considered in future research of this topic: 

 A larger sample size is necessary to confirm the findings of this report. Ideally, this sample 

could be expanded to other cities in Australasia with large cycling populations, such as Melbourne 

and Adelaide in Australia. 

 The reporting rate of cycle crashes could be improved by extending the 0800 CYCLECRASH 

system currently in use in the Nelson/Tasman region to a nationwide scale, or at least to one or 

more other cities with high cycling volumes, eg Christchurch. 

 The disparity in findings on the presence of cycle lanes at mid-block sections must be 

studied further. It is possible that the sample set used for this study was biased towards sites with 

a higher rate of cycle crashes. A larger sample size could potentially negate this bias. 

 Two of the signalised intersection categories – ‘right turn against’ crashes and ‘other’ crashes – did 

not have sample sizes large enough from which to develop crash prediction models. Future 

research could focus on these intersection-based crashes to narrow the scope of the study. 
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 A study on the safety of off-roadway cycle paths in New Zealand should be undertaken. This 

has not been studied well anywhere else in the world.  It would be necessary to interview/survey 

cyclists using rail trails or bike paths in several rural and urban centres, potentially including 

routes through Hagley Park, along QEII Drive and beside the railway in Christchurch; Evans Bay to 

Oriental Bay or Hutt Road in Wellington; the North-western Cycleway in Auckland; Nelson’s off-

roadway cycle path system; or the New Plymouth Coastal Cycleway. 

 More New Zealand research is required on how best to design off-roadway paths (especially 

shared-use footpaths) for cyclists. Specific examples of existing facilities that have provided 

good safety performance should be cited. This research can cascade into updates to the prevailing 

design standards for cycle paths. 

 Giving consideration to existing advice on selecting cycle safety treatments, a decision tree 

should be developed to provide advice on suitable treatments for parts of the road network 

based on road hierarchy and type of cyclists.  
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Appendix A: Crash prediction model parameters 

A1 Introduction 

This appendix outlines all the crash prediction models developed using the modelling procedure in 

chapter 5. The model parameters are included in tables in the following section by crash type and have 

been sorted by their BIC. The preferred model, ie the model that maximises the quality of fit while 

having a parsimonious number of variables, is highlighted in bold and pale grey fill. 

To illustrate how the models can be reconstructed from their parameters, the parameters in table A.1 

will be reconstructed to form a model for predicting pedestrian crashes. 

Table A.1 Sample parameters for model reconstruction 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier 

Ф 

Error 

structure 
BIC 

P, e(Qa/100) ФMEL 3.84×10-4 0.55 0.003   3.67 k = 1.8 0.889 

 

The first stage is to write out the functional form of the model. Models always start with the b0 

parameter and then the multiplicative variables are added. If the variables listed are not exponents or 

multipliers (Ф) (for example, P), they are in a power function form and have a model parameter as an 

exponent. If the variable is an exponent such as Qa/100 then the model parameter is a multiplier in 

the exponent. Finally, the multipliers (Ф) are added without any parameters, and the value in the table 

is the multiplier if the feature is present. The parameters are numbered by the corresponding location 

in the list of predictor variables. Using this process, the functional form of the predictor variables in 

Table A. is shown in equation A.1. 

 MEL
Qabb ePbA   )100/(21

0  (Equation A.1) 

The next step is to add in the model parameters to the functional form as illustrated in equation A.2. 

 MEL
QaePA   )100/(003.055.041084.3  (Equation A.2) 
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A2 Model parameters 

The following section outlines the model parameters for the eight crash categories.  

Table A.1 Cyclist mid-block crashes (UCMN0) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier

Ф 

Error 

structure 

BIC 

Q, L 1.43×10
-2
 0.29 0.36    k = 1.6 2.861 

C, L 8.73×10
-2
 0.20 0.36    k = 1.6 2.862 

Q, C, L 8.60×10
-3
 0.25 0.17 0.37   k = 1.6 2.902 

Q, C, L, ФFLUSHMEDIAN 1.05×10-2 0.25 0.16 0.45  0.63 k = 1.7 2.926 

Q, C, L, W
e
 1.65×10

-3
 0.33 0.11 0.28 0.65  k = 1.7 2.937 

Q, C, L, ФCYCLANE 7.11×10
-3
 0.25 0.19 0.38  1.21 k = 1.6 2.944 

Q, C, L, W 1.15×10
-3
 0.36 0.15 0.35 0.62  k = 1.6 2.945 

Q, C, L, S 2.04×10
-3
 0.23 0.18 0.37 0.40  k = 1.6 2.949 

Q, C, L, Lns 7.38×10
-3
 0.27 0.17 0.37 -0.05  k = 1.6 2.949 

Q, C, L, e(As/100),  

e(Ar/100), e(Ao/100)* 
8.26×10

-3
 0.30 0.14 0.50 -0.03  k = 1.7 3.038 

*For the last model, b5 = 0.0 and b6 = -0.01. 

 

 

Table A.3 All mid-block crashes (UAMN0) 

Parameters Predictor  

variables b0 b1 b2 b3 b4 

Multiplier

Ф 

Error 

structure 

BIC 

Q, L, ФNOPARKING  0.84 0.30    0.25 k = 1.4 5.120 

Q, L 0.71 0.35     k = 1.3 5.171 

Q, L, 

ФVERYLOWPARKINGUSE 
0.76 0.21    1.64 k = 1.3 5.185 

Q, C, L 0.66 0.29 0.35    k = 1.3 5.192 

Q, L, ФCYCLANE 0.71 0.36    1.22 k = 1.3 5.209 

C, L, ФNOPARKING 0.34 0.28    0.36 k = 1.3 5.211 

Q, L, e(Ar/100) 0.78 0.28 0.00    k = 1.3 5.211 

Q, L, ФFLUSHMEDIAN 0.71 0.39    0.85 k = 1.3 5.214 

C, L 0.37 0.33     k = 1.2 5.218 

Q, L, e(As/100)   0.37 0.30 0.02    k = 1.2 5.256 
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Table A.4 Cyclist mid-block turning crashes (UCMN1) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier 

Ф 

Error 

structure 

BIC 

Q 2.92×10
-2
 0.15     k = 1.0 2.304 

Q, L 2.22×10-2 0.21 0.42    k = 1.2 2.319 

C, L 2.29×10
-1
 -0.05 0.41    k = 1.2 2.322 

Q, L, ФFLUSHMEDIAN 3.50×10-2 0.19 0.54   0.48 k = 1.3 2.329 

Q, L,  

ФVERYLOWPARKINGUSE 
6.36×10

-3
 0.30 0.27   1.85 k = 1.3 2.340 

Q, L, ФNOPARKING 1.08×10
-2
 0.28 0.41   0.49 k = 1.2 2.353 

Q, L, e(As/100)   1.98×10
-2
 0.19 0.38 0.03   k = 1.2 2.355 

Q, L, ФCYCLANE 1.90×10
-2
 0.21 0.44   1.32 k = 1.2 2.358 

Q, L, W 2.94×10
-3
 0.31 0.40 0.63   k = 1.2 2.363 

Q, L, S 8.71×10
-4
 0.17 0.42 0.93   k = 1.2 2.364 

Q, C, L 2.81×10
-2
 0.23 -0.09 0.42   k = 1.2 2.365 

Q, L, Lns 1.41×10
-2
 0.25 0.42 -0.13   k = 1.2 2.365 

Q, L, e(Ar/100) 2.09×10
-2
 0.21 0.42 0.00   k = 1.2 2.366 

Q, C, L, ФFLUSHMEDIAN 4.69×10
-2
 0.21 -0.11 0.55  0.48 k = 1.3 2.375 

Q, C, L, We 1.10×10
-3
 0.39 -0.22 0.24 1.33  k = 1.3 2.376 

Q, C, L, W 3.40×10
-3
 0.35 -0.10 0.40 0.67  k= 1.2 2.408 

Q, C, L, S 1.50×10
-3
 0.19 -0.06 0.42 0.82  k = 1.2 2.410 

Q, C, L, Lns 1.66×10
-2
 0.29 -0.10 0.42 -0.15  k = 1.2 2.411 

 

 

Table A.5 All mid-block turning crashes (UAMN1) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier 

Ф 

Error 

structure 

BIC 

Q, L, ФNOPARKING 1.37×10-3 0.56 0.10   0.25 k = 0.8 3.646 

Q, L 7.26×10
-3
 0.39 0.16    k = 0.7 3.648 

C, L 1.09E×10
-1
 0.23 0.14    k = 0.8 3.653 

Q, L, 

ФVERYLOWPARKINGUSE 
2.15×10

-3
 0.48 -0.02   2.05 k = 0.8 3.655 

Q, L, ФFLUSHMEDIAN 8.01×10
-3
 0.40 0.23   0.72 k = 0.7 3.687 

Q, C, L 4.09×10
-3
 0.35 0.19 0.17   k = 0.7 3.690 

Q, L, e(As/100)   7.16×10
-3
 0.39 0.15 0.01   k = 0.7 3.694 

Q, L, ФCYCLANE 7.19×10
-3
 0.39 0.17   1.06 k = 0.7 3.695 

Q, L, e(Ar/100) 5.83×10
-3
 0.41 0.14 0.00   k = 0.7 3.695 
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Table A.6 Cyclist non-turning crashes (UCMN2) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier

Ф 

Error 

structure 

BIC 

C 3.90×10
-3
 0.53     Poisson 1.560 

Q 9.95×10
-4
 0.42     Poisson 1.589 

C, L 4.52×10
-3
 0.54 0.27    Poisson 1.595 

Q, C 2.11×10
-4
 0.30 0.51    Poisson 1.601 

Q, L 8.61×10
-4
 0.46 0.28    Poisson 1.622 

Q, C, L 2.28×10-4 0.31 0.50 0.27   Poisson 1.635 

C, L, ФFLUSHMEDIAN 4.71×10
-3
 0.53 0.27   0.94 Poisson 1.641 

C, L, 

ФVERYLOWPARKINGUSE 
4.79×10

-3
 0.53 0.30   0.86 Poisson 1.641 

C, L, ФCYCLANE 4.56×10
-3
 0.54 0.27   0.99 Poisson 1.642 

 

Table A.7 All non-turning crashes (UAMN2) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier

Ф 

Error 

structure 

BIC 

Q, L, ФNOPARKING 4.39×10-5 0.97 0.42   0.25 k = 1.6 4.224 

Q, L 1.25×10
-4
 0.86 0.45    k = 1.3 4.261 

Q, C, L 3.55×10
-5
 0.80 0.33 0.44   k = 1.4 4.276 

Q, L, ФCYCLANE 8.34×10
-5
 0.89 0.46   1.34 k = 1.4 4.290 

Q, L, e(Ar/100) 3.62×10
-5
 0.96 0.35 0.00   k = 1.4 4.294 

Q, L, 

ФVERYLOWPARKINGUSE 
8.37×10

-5
 0.89 0.36   1.37 k = 1.4 4.297 

Q, L, e(As/100)   1.22×10
-4
 0.85 0.42 0.02   k = 1.4 4.299 

Q, L, ФFLUSHMEDIAN 1.27×10
-4
 0.86 0.45   0.97 k = 1.3 4.308 

C, L 7.02×10
-2
 0.43 0.43    k = 1.2 4.332 

 

Table A.8 Cyclist signalised crossroad product of link (UCXT0) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier

Ф 

Error 

structure 

BIC 

QMOTOR, 1.00×10
-2
 0.15     Poisson 0.819 

QCYC 3.15×10
-2
 0.05     Poisson 0.820 

QMOTOR, ФCYCLANE 6.63×10
-3
 0.18    1.43 Poisson 0.845 

QCYC, QMOTOR 8.86×10
-3
 0.04 0.14    Poisson 0.848 

QCYC, QMOTOR, 
ФCYCLANE 

6.16×10-3 0.03 0.17   1.41 Poisson 0.874 
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Table A.9 Motor vehicle signalised crossroad product of link (UMXT0) 

Parameters Predictor 

variables b0 b1 b2 b3 b4 

Multiplier 

Ф 

Error 

structure 

BIC 

QMOTORr 3.71×10-4 0.67     Poisson 2.125 

QMOTOR, ФCYCLANE 4.41×10
-4
 0.65    0.91 Poisson 2.153 

QCYC, QMOTOR 3.39×10
-4
 0.03 0.66    Poisson 2.153 

QCYC,QMOTOR, 
ФCYCLANE 

4.07×10
-4
 0.03 0.65   0.90 Poisson 2.181 
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Appendix B: Predictor variables and model 
parameters 

A:    annual number of crashes 

C:    total two-way bicycle flow 

L:    length of block in km 

Lns:    number of lanes in one direction on approach  

Q:    total two-way motor vehicle flow 

S:    mean motor vehicle speed in km/h 

W:    width of lane used by cyclists in m 

We:    effective width of kerbside lane including vehicle and cycle lanes in m 

ФCYCLANE:   factor for the presence of a cycle lane 

ФFLUSHMEDIAN:   factor for the presence of a flush median 

ФNOPARKING:   factor if parking is prohibited on a particular block 

ФVERYLOWPARKINGUSE:  factor if parking is allowed but used very rarely on block 

ФMOTOR:   ???? appears in Table A.9 

ФCYC:    ???? appears in Table A.9
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Appendix C: Models 

UAMN1: All vehicles, mid-block turning crashes 

UAMN2: All vehicles, non-turning crashes 

UCMN1: Cyclist v motor vehicle, mid-block turning crashes 

UCMN2: Cyclist v motor vehicle, non-turning crashes 

UCMN0: Cyclist v motor vehicle, mid-block crashes 

UAMN0: All vehicles, mid-block crashes 

UCXT0: Cyclist v motor vehicle, signalised crossroad product of link 

UMXT0: All vehicles, signalised crossroad product of link 
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Appendix D Recommended further reading 

The publications listed below have not been referenced in the main body of this report, but they 

contain useful or interesting information and ideas related to cycle safety and crash prediction 

modelling. 

Allen, JS (2002) Bicycle sidepaths: crash risks and liability exposure. Accessed 17 September 2009. 

http://www.bikexprt.com/bikepol/facil/sidepath/sidecrash.htm  

Antonakos, CL (1994) Environmental and travel preferences of cyclists. Transportation Research Record 

1438. Washington, DC: Transportation Research Board. 

Brude, U, and J Larsson (1993) Models for predicting accidents at junctions where pedestrians and 

cyclists are involved. How well do they fit? Accident Analysis and Prevention, Vol. 25: 499–509.  

Davies, DG (1999) Integrating cycling with mainstream traffic engineering. Thirteenth Velo-city 

International Conference Proceedings, Dublin.  

Harkey, DL, JR Stewart and ER Rodgman (1996) Evaluation of shared-use facilities for bicycles and 

motor vehicles. Tallahassee, Florida: Florida Department of Transportation 

Forester, J (1978) The effect of bikelane system design upon cyclists’ traffic errors. Accessed 18 

September 2009. http://www.johnforester.com/Articles/Facilities/bikelane.htm  

Forester, J (1992) Setting traffic signal clearance interval for wide streets crossed by bicycle traffic. 

Accessed 18 September 2009. http://www.johnforester.com/Articles/Facilities/traffsig.htm. 

Godefrooij, T (2000). Segregation or Integration? – the Dutch approach. Fourteenth Velo-city 

International Conference Proceedings, Munich.  

Hunter, WW, JR Stewart, JC Stutts, HH Huang, and WE Pein, (1998) A comparative analysis of bicycle 

lanes vs. wide curb lanes: final report. Federal Highway Administration Report FHWA-RD-99-034. 

Washington, DC: Federal Highway Administration. 

Landis, B (1994) Bicycle interaction hazard score: a theoretical model. Transportation Research Record 

1438. Washington, DC: Transportation Research Board. 

Noland, RB (1995) Perceived risk and modal choice: risk compensation in transportation systems. 

Accident Analysis and Prevention, Vol 27 No 4:503–521.  

Sebastian, JR (2000) Integrated and segregated facilities worldwide. Discussion points: integration or 

segregation workshop. Fourteenth Velo-city International Conference Proceedings, Munich.  

Simpson, M (1999) The benefits of advanced stop lines and cycle lanes for cyclists, pedestrians and 

accidents in Edinburgh. Thirteenth Velo-city International Conference Proceedings, Dublin.  

Wilkinson, WC, B Epperson and R Knoblauch (1994) The effects of bicycle accommodations on 
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for the Federal Highway Administration.  
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