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Executive summary 

Reliable journey time is a key parameter in travellers’ route choice and has important applications in 

transport planning and modelling. For transport users, it affects their choice of mode, journey route and 

also their activity patterns. For transport planners and policy makers, journey time estimates are used to 

provide key indicators for performance monitoring, congestion management, travel demand modelling 

and forecasting, traffic simulation, air quality analysis, evaluation of travel demand, traffic operations 

strategies and for justifying the provision of transport infrastructure and improvements. 

In 2012, the NZ Transport Agency appointed Sinclair Knight Merz (SKM) to carry out research into travel 

time predictability. The intention was to clarify how historical base-line data combined with near real-time 

data including environmental conditions, incidents and traffic flow could contribute to the calculation of 

reliable and timely delivered travel time predictions. 

The first stage of the study was a comprehensive review of the existing literature on travel time prediction. 

Various prediction methods and case studies were reviewed to develop an overview of the current 

methodologies and research into developing techniques. The review concluded that there were two main 

methods which could be used to predict travel times: simulation modelling and statistical analysis. The 

latter method has been recommended as it is the most closely aligned with the client’s requirements and 

is less data intensive. 

The second stage of the project reviewed the data which had been received and undertook some initial 

analysis of the data based on some of the methods identified. Two statistical methods (auto-regressive 

moving average and non-linear time series analysis) were considered. The results arising from the first of 

these methods proved inconclusive, but the second method indicated that it might prove a suitable basis 

for the development of a prediction tool. 

The final stage of the project involved the implementation of the recommended methodology to test its 

accuracy when applied to the Auckland strategic motorway network. This stage required the construction 

of a ‘demonstrator’ model which was capable of reading in historic traffic data and making travel time 

predictions for a range of horizons from five minutes to one week. These predictions were then compared 

with actual observations so that the accuracy of the model could be ascertained. 

The output from the model indicated that it was able to accurately predict journey times over a five-minute 

horizon for certain links, but was very inaccurate for other links. For those links where the model was able 

to produce an accurate five-minute prediction, it was also capable of predicting journey times with 

reasonable accuracy up to one week into the future. 

Analysis was undertaken to identify what factors might influence the model’s ability to accurately predict 

times for certain links and not others. There appeared to be little correlation between model accuracy and 

traffic volumes or link length. Spatial analysis of the results indicated that links in the vicinity of major 

intersections tended to demonstrate poorer prediction accuracies. 

The overall conclusion of the study is that it is currently difficult to predict journey times using the 

statistical method and current data availability with any degree of accuracy across the Auckland network. 

However, the research has shown that accurate predictions are possible in certain situations and that 

further study may result in improved accuracy across the network. 
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Fragmentation and categorisation of data sets to provide for weekday models, non–ramp affected links 

and more uniform traffic levels throughout the day may provide a basis from which more reliable travel 

times can be predicted.  

 

Abstract 

Reliable journey time is a key parameter in travellers’ route choice and has important applications in 

transport planning and modelling. For transport users, it affects their choice of mode, journey route and 

also their activity patterns. For transport planners and policy makers, journey time estimates are used to 

provide key indicators for performance monitoring, congestion management, travel demand modelling 

and forecasting, traffic simulation, air quality analysis, evaluation of travel demand and traffic operations 

strategies. 

This research aimed to clarify how historical baseline data combined with near real-time data including 

environmental conditions, incidents and traffic flow could contribute to the calculation of reliable and 

timely delivered travel time predictions. 

A comprehensive literature review was undertaken to establish existing methods for predicting travel time. 

Based on the findings of the literature review, and using sample data from Auckland’s strategic road 

network, a model was developed to determine if these methods could be applied to strategic roads 

throughout New Zealand. 
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1 Introduction 

1.1 Overview 

In 2012, the NZ Transport Agency (Transport Agency) appointed Sinclair Knight Merz (SKM) to carry out 

research into travel time predictability. The purpose of the research was to clarify how historical base line 

data combined with near real-time data including environmental conditions, incidents and traffic flow 

could contribute to the calculation of reliable and timely delivered travel time predictions. 

1.2 Background 

Reliable journey time is a key parameter in travellers’ route choice and has important applications in 

transport planning and modelling. For transport users, it affects their choice of mode, journey route and 

also their activity patterns. For transport planners and policy makers, journey time estimates are used to 

provide key indicators for performance monitoring, congestion management, travel demand modelling 

and forecasting, traffic simulation, air quality analysis, evaluation of travel demand and traffic operations 

strategies. 

Real-time travel time information is becoming increasingly important for a variety of transport applications 

– including advanced traveller information systems, advanced traffic management systems and route 

guidance systems, which all form part of the collective intelligent transportation system (ITS). 

As ITSs are deployed more widely throughout the world, managers of transport systems have increasing 

access to large amounts of historical and ‘real-time’ status data. Traffic flows, speeds and densities on 

transport networks are being continuously measured by different monitoring systems such as loop 

detectors, automatic number plate recognition systems, closed circuit television monitoring and, more 

recently, probe vehicles and mobile phone data. 

The collected information can be used to guide the use of dynamic traffic management measures such as 

variable message signs and information provided by radio and the internet in order to reduce congestion 

and improve network efficiency. 

The availability of real-time traffic information, developments in information technology and the need for 

predicting short-term traffic conditions have raised the question: Can we predict travel time? It has been 

recognised by researchers and practitioners alike that the benefits of ITS capabilities cannot be fully 

realised without an ability to anticipate traffic conditions in the short term (ie less than one hour into the 

future). 

Predictive modelling capability can theoretically provide the ability to forecast the performance of a 

transport network in the short term and may also allow the impact of planned and unplanned events and 

incidents on the network to be assessed in near real-time. 
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1.3 Research objectives 

The key objectives of the research were to: 

1 Understand the current state of research locally and internationally on real-time prediction 

methodology – specifically identify from current research the most suitable methodology for 

predicting journey times from real-time data sources for strategic highway networks. 

2 Understand what data sources currently exist and identify the gaps in the current information sources 

that are preventing accurate journey time predictions. 

3 Develop summary statistics of the observed data to identify the impact of key parameters on journey 

times in normal traffic conditions and also during abnormal conditions resulting from planned and 

unplanned events and incidents. 

4 Develop an appropriate forecasting model to predict travel times with a reasonable degree of 

confidence and develop a testing methodology for verifying the results. 

5 Summarise the findings in a comprehensive research report which also provides a programme for 

delivery of a travel time predictive capability for the strategic highway network. 

The research aimed to deliver a modelling framework that could forecast journey times based on near 

real-time traffic information and historic data sources. The modelling approach would have to take into 

account all explanatory variables which could affect the reliability of forecast results. The model would 

also need to incorporate spatio-temporal relationships which have a direct impact on traffic on the 

highway sections where journey time is being forecast. 

One of the most import aspects of the research was to understand existing data sources and gaps in 

traffic information which could affect the reliability of modelling results. In addition, the research also 

focused on the impact of planned and unplanned disruptions in the highway network capacity. 

1.4 Research stages 

The study involved three main stages of work: 

• A literature review, which examined the various prediction methods and case studies that had been 

developed. The objective of this stage was to gain an insight into current state-of-the-art 

methodologies and research into developing techniques. The review informed the development of a 

travel time prediction methodology for use in New Zealand. 

• A review and analysis of available data sources. As the study would require a large quantity of 

existing, available real-time data sources in New Zealand, the strategic motorway network of Auckland 

was chosen as the core study network due to extensive coverage of real-time continuous traffic 

monitoring stations and the availability of over two year’s historic data.  

• Development of a working ‘demonstrator’ model which would attempt to apply the preferred 

methodology to the historic data and predict future journey times. These predictions were validated 

against actual observations. 
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1.5 Structure of the report 

The remainder of this report is structured in the following manner: 

• Chapter 2 provides an overview of the literature review process and summarises some of the key 

findings. 

• Chapter 3 briefly describes the analysis of the sample data. 

• Chapter 4 describes the modelling process in detail and how this was applied in a working model. 

• Chapter 5 presents the results from the demonstrator model. 

• Chapter 6 sets out the key lessons learned from the research 

• Chapter 7 has a summary of conclusions. 

• Chapter 8 gives some recommendations for further study. 

• Chapter 9 is a bibliography of works relevant to the subject of travel time predictability. 
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2 Literature review 

2.1 Overview 

The first stage of the study was a comprehensive literature review, which formed a descriptive review of 

the existing literature on travel time prediction. Various prediction methods and case studies were 

reviewed to develop an overview of current methodologies and research into developing techniques. The 

key objective of the literature review was to provide a survey of existing literature and the applied 

methods for travel time and other real-time traffic prediction studies. This chapter provides a brief 

overview of the literature review and a summary of its findings. 

There are several papers detailing research into travel time prediction spanning the last two decades 

(Peeta and Mahmassani 1995; Ben-Akiva et al 1997; Al-Deek et al 1998; Kamarianakis and Prastacos 2003; 

Zhang and Rice 2003; Meschini and Gentile 2009; Gentile and Meschini 2011). Many of these papers 

provide evidence of the successful application of short-term travel time prediction around the world. By 

and large, the literature points to evidence that the reliability of the journey time predictions depends on 

the quality, level of accuracy and availability of real-time data, the extent of the transport network and the 

chosen prediction methodology (D’Angelo et al 1999; Van Lint et al 2004; 2005; 2008). 

The literature also highlights that the ‘forecasting platform’ needs to be sufficiently fast (very close to real 

time) in order to allow network managers to detect and mitigate, minimise or remove the impact of events 

and incidents within the network (Gentile 2010).  

2.2 Key variables and data requirements 

Travel time predictions require an extensive understanding of general traffic behaviour and underlying 

trends along with real-time traffic state measures from the field. Historical data is required to develop 

relationships between traffic speeds and other inputs, and also to develop an understanding of traffic 

patterns during different time periods and seasons. 

A review of available literature (Vanajakshi 2004; Kamarianakis et al 2005; Min et al 2007; Meschini and 

Gentile 2009) reveals that a multi-variable travel time prediction framework benefits from the following 

primary data: 

• average speed 

• average vehicle length 

• traffic volume (unclassified or classified) 

• average occupancy (of detector loops) 

• highway geometric data (eg turning radii, section lengths) 

• network configuration (eg banned turns, one way streets) 

• incident data (location and duration) 

• route choice (eg turning proportions at junctions). 
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Of this data, traffic speed, volume and occupancy data are the key variables in models that have been 

successfully developed. Highway geometry and network configuration are other inputs that can be 

introduced into the model. Route choices and interaction between network links can be imported from a 

developed and calibrated strategic transport model. 

In addition to the above, other supplementary data sources can be used to provide further segmentation 

of the model, thus allowing separate relationships to be developed for varying network conditions. These 

include: 

• weather conditions 

• day-type classification (eg weekday, weekend, holiday period) 

• planned and unplanned incidents records. 

2.3 Data sources 

There are two main types of data sources required to develop accurate travel predictions: 

1 Real-time data: live traffic data streams used as inputs to the predictive model tool 

2 Historic data: primarily, this is the same data as above, but collected over a period of time to allow 

periodic calibration of the model. In addition, this data is supplemented by secondary data (eg event 

data) to develop an understanding of how traffic conditions vary seasonally, or to respond to events 

and other external influences. 

The data requirements for each model will depend on the required outputs and the specifics of the study 

area. For example, traffic state prediction for an urban network will require detailed traffic flow patterns 

including origin-destination (OD) information, routes taken by vehicles, vehicle classification, key traffic 

generators and attractors. For statistical travel time predictions on a strategic highway corridor, the above 

information may not be required as route choice and the number of attractors and generators will be limited. 

2.4 Modelling approaches 

2.4.1 Existing research and linkages 

Real-time traffic modelling and predictive analysis has been under research for a number of years. There is 

a large interest in understanding the progression of traffic and predicting traffic conditions in the near 

future. The research papers variously propose a wide range of applications, predominantly online 

information systems, vehicle and probe guidance systems and input to other traffic management systems 

used by road traffic authorities. 

Various studies have approached the problem from different perspectives largely owing to different project 

objectives and the availability of data. The literature review revealed that two main categories of modelling 

approaches have been successfully used in the development of predictive and real-time modelling tools: 

• Dynamic simulation modelling: This uses extensive network representation and assignment of historic 

travel patterns using real-time traffic data inputs (Ben-Akiva et al 1997; Yang et al 2000; Kaufman et al 
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1991; Gentile 2010). These models use first principles to describe drivers’ route choice behaviour 

based on dynamic traffic assignment and progression of traffic based on network supply constraints. 

• Statistical modelling: These are data-driven methods and predict travel times based on current and 

past real-world detector data, without explicitly considering the physical processes considered by the 

simulation-based methods (Smith et al 2002; Ishak and Al-Deek 2003; Yang 2005; Min et al 2007). 

Auto regressive time series analysis and other stochastic methods are used based on historic and near 

real-time data (Kamarianakis and Prastacos 2003; Milkovits et al 2010; Hu and Ho 2010). 

The dynamic simulation modelling approach uses first principles of traffic flow theory in determining 

traffic flows and speeds through the network and thereby attempts to predict the progress of vehicles 

(either individually or in aggregate) through the network. Secondary variables such as journey time, 

saturation, delay and queues can then be calculated following the simulation. 

The statistical modelling approach uses a calibrated function to predict the travel time on each link based 

on current link speeds, historical traffic data and spatio-temporal transport network correlations (ie speed 

and flows on other parts of the network). Statistical modelling requires separately calibrated models for 

each model segment. 

2.4.2 Dynamic simulation models 

The simulation modelling approach is based on an explicit and physical interpretation of the network and 

traffic conditions. This is achieved through detailed simulation of the interaction between travel demand 

and road network (supply) through assigned routes based on a previously developed equilibrium 

assignment model. 

The dynamic modelling techniques use a traditional transport modelling approach where the travel 

demand is assigned on the highway network as a continuous load. The simulation-based model predicts 

traffic conditions based on real-time data inputs and an existing calibrated traffic model. It uses 

established modelling theory to assign traffic for a number of small, discrete time periods in the near 

future. The output from each time period is used to inform the next. Travel time and other network 

statistics are available as standard outputs of the model. This approach requires the modeller to estimate 

traffic conditions at the boundaries of the model (this includes traffic generators within the study area). 

Examples of the successful application of this approach are evidenced by DYNAMIT (Milkovits et al 2010), 

METANET (Smulders et al 1999), DYNASMART (Hu 2001) and CORSIM (Liu et al 2006). More details of 

these models are provided in appendix A. 

This forecasting methodology has benefits in simultaneously and holistically forecasting performance and 

travel metrics for the entire network. It also has an added advantage in cases of unplanned incidents where 

new forecasts can be derived from ‘re-assignment’ of expected demand. On the other hand, simulation 

modelling can be extremely data intensive and slower than numerical models using a statistical approach. 

Simulation modelling is most beneficial when used for urban traffic management or in deriving efficiency 

gains at traffic signal control centres. The approach could theoretically be used for simpler networks (for 

example, motorways), but in these situations the statistical approach may be able to provide more accurate 

results, and do so more quickly and much more cost effectively than by using simulation modelling. 
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2.4.3 Statistical models 

The statistical modelling approach uses interpolation, interference, data mining and mathematical models 

to derive near-future segment speeds based on current observations of traffic speeds and volumes. This 

approach uses historic data to determine and synthesise a mathematical relationship so that near-future 

conditions can be determined from trends in real-time traffic volume and speeds. Statistical methods such 

as time series analysis and the Kalman filtering method are used to calibrate the model and to provide an 

estimation of future travel time from real-time data. 

In the simplest example of a statistical model, the current speed on a particular network segment will 

provide a good indication of the speed on downstream links in the near future, with the time difference 

depending on the distance between the two segments. The problem becomes more complex when two 

traffic streams merge or separate at on- and off-ramps, or where there is a change in link capacity. 

These models are extremely useful in predicting traffic speeds in simple networks with low traffic 

volatility. The challenge this methodology faces is when there are unprecedented traffic flow patterns due 

to significant spikes in travel demand or highway network disruption (eg roadworks) which change the 

network configuration or capacity.  

2.5 Comparison of modelling approaches 

2.5.1 Simulation method 

The simulation method uses a traffic model to calculate the routing of vehicles from first principles based 

on established modelling algorithms. It is potentially a very powerful tool, provided that the underlying 

model is robust and there is sufficient data to allow accurate calibration. The advantages and 

disadvantages of this approach are listed below. 

2.5.1.1 Advantages 

Unlike the statistical method which is suited to simple networks, there is theoretically no mathematical limit 

to the size or complexity of the network which can be covered by a simulation-based predictive model. This 

is because the method is based on an underlying model containing information about vehicle routing, which 

means that the number of calculations in the model grows roughly linearly as the number of modelled links 

increases (as opposed to the exponential increase required in statistical models). Model size will be limited 

by the speed at which assignments can be undertaken so that predictions can be delivered timely, but 

computer processing power is now sufficient to allow even large cities to be covered in detail. 

The models upon which simulation-based systems are based also provide the ability to forestall the impact 

of events. Whereas the statistical method relies on mathematical relationships to determine future trends, 

strategic models contain much more fundamental data on the road network and traffic demand and can 

forecast future behaviour from first principles. This information can be used to predict how travel 

behaviour will change regardless of whether a particular event or incident has been observed before. An 

example could be the temporary closure of a road which could be simulated in the model before the event 

takes place, ensuring that the remainder of the network is optimised in anticipation of the event. 

Furthermore, a simulation-based system could be used to test a range of traffic management scenarios to 

determine the optimum solution in response to a particular planned or unplanned event. The simulation 

method can also handle signalised junctions much more easily in terms of incorporating the impact of 
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current plans on delays and routing, but additionally, a simulation-based system could potentially assist in 

the selection of appropriate plans to minimise delays on the network. 

Another advantage that the simulation method has is data redundancy and its ability to still produce 

relatively accurate predictions despite gaps in the incoming data stream. This is because the model can be 

updated and recalibrated based on whatever data is available, yet still maintain a good representation of 

network conditions across the network. 

However, the biggest advantage that the simulation method has over the statistical method is that it 

already quite well established with at least two well-developed commercial packages available (albeit at 

significant cost). 

2.5.1.2 Disadvantages 

It is no surprise that the complexity of simulation-based tools is also a big disadvantage, not least because of 

the large quantities of time and money that must be spent in both implementing and maintaining them. The 

cost of the commercial software aside, there is usually great expense required to develop and calibrate the 

traffic model which will form the basis of the system. For the system to work accurately, the model must be 

robust and based on high-quality and spatially detailed data. This will usually require a very comprehensive 

programme of surveys to determine the underlying travel behaviours. Construction of the model itself will 

require specialist expertise to ensure that it is built to the highest standard. In addition to the up-front costs, 

the model will require periodic re-calibration every few years requiring further expense. 

2.5.2 Statistical method 

The statistical method is based on mathematical relationships developed through statistical regression 

analysis. It is the simpler of the two methodologies which means it should be quicker and cheaper to 

implement, but this also limits its capabilities. The advantages and disadvantages of this approach are 

described below. 

2.5.2.1 Advantages 

The main advantage of the statistical method is its simplicity. Although the relationships and functions 

used to undertake the predictions can be become quite complex, the framework in which they sit is very 

basic and will require little in the way of manual input or monitoring. Provided the inputs and outputs to 

the system are automated, a prediction tool based on the statistical method should be self-maintained. 

The system can be configured to periodically re-calibrate itself and because there is no detailed network, 

any minor changes to the transport network will be incorporated into the model automatically over time. 

On a simple network, such as a trunk road or motorway network, this method could provide accurate 

results at a fraction of the cost compared with the simulation method. 

2.5.2.2 Disadvantages 

The statistical method’s simplicity is also its key weakness. As transport networks become more complex, 

the number of connections between links in the network quickly multiplies to the point where regression 

can no longer identify which connections have significant mathematical relationships. Furthermore, 

networks with anything more than nominal route choice will most likely render the method ineffective, as 

will any network with a large number of traffic signals. Both of these situations lead to interactions which 

are too complex for the model to handle with any degree of accuracy. 
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Another weakness of the statistical method is that it is ‘reactive’, ie the functions are re-calibrated based 

on recent observations. As noted above, this is a desirable feature as the model can update itself and react 

to changing conditions. However, this does mean that planned events cannot be pre-empted unless they 

have occurred and been observed before; examples include sudden event-related peaks of traffic, or 

temporary lane closures. In these cases the model will offer predictions based on the best information 

available, but with varying degrees of accuracy. 

Finally, the statistical method suffers because it has been largely overlooked in the past by transport 

software firms. This is probably because the method is best suited to sparse, strategic networks, whereas 

the focus of predictive modelling so far has been in urban settings. This means that, although a statistical 

system would be simple to operate, it will require highly specialised skills to set up. This is due to the 

need to undertake very complex statistical analysis and to develop a working system from first principles. 

2.5.3 Method comparison 

Table 2.1 shows a high-level comparison of statistics-based and simulation-based approaches. 

Table 2.1 Comparison of modelling approaches 

Features Simulation-based approach Statistics-based approach 

Basis of system Traffic model calculating vehicle 

routes from first principles. 

Mathematical relationships between 

different road segments and time 

periods. 

Network size/complexity Can be highly complex, eg urban 

road network. Can include signalised 

junctions and route choice. 

Small or simple networks (eg single 

corridor or a motorway network). 

Limited signals and route choice. 

Data requirements Complex: Additionally requires data 

on travel behaviour and signal 

information. 

Basic: ‘Live feed’ of traffic flows, 

speeds and external events, plus 

historic log of same data. 

Ability to predict during 

events 

Good. Plus, can be used to pre-empt 

planned events and to test a range 

of traffic management responses. 

Good if event has occurred before, 

otherwise limited. 

Cost to implement High. Modest. 

Cost to monitor and 

maintain 

High. Will generally need constant 

monitoring and require periodic 

recalibration. 

Low. Will be largely self-maintaining 

and will require low levels of 

monitoring. 

Software available? Yes. No. 

 

2.5.4 Survey of travel time prediction studies 

A comprehensive summary of all the documents reviewed as part of this research is included as appendix A. 

The review of the studies shows that the statistical approach was mostly used when the study network was 

a corridor with a limited number of links and junctions. This modelling approach does not require 

information regarding the OD of trips, zones or route choices. The forecast run-time is quick and in most 

of the examples provided this approach has been capable of accurate predictions. 

The simulation method has been used to model larger or more complex areas. However, the number of 

examples of this type of model is lower than for the statistical method. 
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3 Data review and methodology 

3.1 Overview 

The literature review examined various research papers and identified two general approaches. Of these 

the statistical approach was recommended as this was considered to be most suited to the client’s 

requirements. The second stage of the project reviewed the data which had been received and undertook 

some initial analysis of this based on some of the statistical methods identified. The outcome of the 

analysis allowed a more detailed methodology to be developed for the final stage of the study. 

3.2 Statistical methods  

The literature review identified two main groups of statistical modelling which have been successfully 

implemented in the past and these are described below. 

3.2.1 Auto-regressive moving average 

Later methods, most specifically that proposed by Min et al (2007) in the IBM research paper Road traffic 

prediction with spatio-temporal correlations, suggested the use of auto-regressive moving average (ARMA) 

models. ARMA models look at how a variable is influenced by the past values of independent variables and 

possibly by its own past values. In the specific case of travel time prediction, this would mean determining 

the relationship between the current travel time on a particular link and recent travel times on upstream 

links. This relationship would then be applied to the current travel times on the upstream links to 

(theoretically) get the future travel times on the link under scrutiny. 

We understand that the ARMA methodology proposed in the 2007 paper is similar to the one used in the 

IBM traffic prediction tool which was recently piloted for the Transport Agency. This tool has reported 

reasonably small errors of less than 6% for a prediction horizon of 30 minutes. However, the results for 

individual links varied and some links had 10-minute prediction errors as high as 7.33%. The segment with 

the highest accuracy in the Min et al (2007) IBM study (2.7% average error) has more than twice the 

average error of the non-linear method. 

3.2.2 Non-linear time-series analysis 

Up until recently, the most common statistical approach had been that proposed by D’Angelo et al (1999) 

in their paper, Travel-time prediction for freeway corridors and implemented on the I-4 freeway in Florida. 

The methodology used non-linear time-series analysis to predict the travel times on individual freeway 

sections, based on historic data from the same freeway section. A prediction horizon of just five minutes 

was recommended in the paper; the horizon is constrained by the data sample interval and increasing this 

interval reduces the accuracy of the model. The paper reported that the method achieved an average error 

of 1.3%, although it was less accurate during congested periods. In total, 98% of predictions fell within 

10% of the actual times. A subsequent evaluation of the method by Ishak and Al-Deek (2003) found that 

errors increased significantly for longer prediction horizons. 
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3.3  General approach 

3.3.1 Our approach 

Our approach to selecting the most appropriate methodology was to undertake initial analysis of the 

available data using each of the available statistical processes. This analysis was done at a basic level, 

involving simple statistical tests including regression and time-series analysis. 

The purpose of the analysis was to identify which of the methodologies was most likely to provide the best 

statistical fit for the data. At this stage, no attempt was made to undertake predictions; the methodology 

selected as part of this process would be developed in the next stage of work and is described in chapter 4. 

Despite reporting slightly less accurate predictions at five minutes, the ARMA methodology is theoretically 

capable of greater accuracy over longer prediction horizons (up to 30 minutes). The evidence from the 

literature review suggested that this methodology was the most likely to produce significant advances 

over the current predictive capability. There are a number of different, specialised ARMA methodologies 

and by combining these with other factors (eg weather and incident data) it is possible that accuracy could 

be suitably improved. Our efforts therefore concentrated on this technique. In addition, we also examined 

ways in which the time-series analysis method could be extended. The tests undertaken are described in 

more detail in section 3.4. 

3.3.2 Data received 

One of the main issues in undertaking any analysis has been obtaining quality data. The traffic data (flows, 

segment speeds) is generally of good quality, although there are large gaps in the data where detectors 

were clearly out of action for long periods. Only one link (out of nearly 500) contained a full 13-month 

period of data with no missing observations. In total, 5.2% of all observations across all links were missing 

from the data, although a small number of links had detectors which were malfunctioning or switched off 

for several months and accounted for most of the missing data. The majority of links had only a few days’ 

data missing at some point over the period. Figure 3.1 shows how the missing data points were 

distributed across the links. 

Figure 3.1 ranks the links according to the number of missing observations and it can be seen that the 

links range from no missing data to nearly 50,000 missing data points (or about half of the total number 

of possible observations). Most links have between 100 and 1,000 missing observations. It should be 

noted that data is recorded in five-minute intervals, so a single day of missing data would result in 288 

missing observations. A week’s loss of data would represent 2,016 missing records and 30 days would be 

the equivalent of 8,640 missing records. Table 3.1 shows the percentage of links below these thresholds 

and it can be seen that around 83% of links had less than one month of missing data. In total there were 

485 links of which 82 had to be initially discarded due to the volume of missing data. However, some of 

the discarded links were reinstated for later tests where only a subset of data was required and this did 

not coincide with the missing period. 
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Figure 3.1 Distribution of missing data points over all links 

 

Table 3.1 Percentage of links versus number of missing observations 

Duration of missing period Percentage of links with fewer 

missing observations than 

threshold 

One day 22.8% 

One week 74.3% 

One month (30 days) 83.1% 

 

By comparison, the weather data was of very poor standard. It was incomplete, with rainfall and solar 

radiation provided for just one of the five sites. Furthermore, the data covered the wrong period (June 

2012 to June 2013 rather than January 2012 to January 2013).  

There were also some issues with the incident data which came as no surprise. It was always expected that 

unplanned events would not be very well recorded, and examination of the data showed this to be the 

case with just 401 incidents in a 13-month period. More than half of the recorded incidents (208) were 

listed as ‘Cautions’ and were usually associated with maintenance issues such as lack of street lighting or 

mud on the road which did not necessarily equate to delays on the network. The dataset did contain a 

sufficiently large number of planned events, but many of these were for full road closures and were not 

very specific on time or location, or if they even went ahead as planned. 

3.4 Data analysis 

3.4.1 ARMA methodology 

With the ARMA model, the observed traffic conditions on each link in the road network can have an 

influence on the vehicle speeds on other links in later time steps. The theory is that, if a relationship 
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between two links can be demonstrated, then the current observations on one link can be used to predict 

near-future observations on downstream links. 

To determine if the data is suitable for this type of model, a correlation function is used to search for 

similar patterns and trends within the data. This function looks at the time series data of each link and 

compares it with data on other links (cross-correlation) and to itself (auto-correlation) for a number of 

different time-offsets. A simplified explanation of this process is described below. 

Figure 3.2 Sample data demonstrating correlation function 

 

Figure 3.2 above shows some sample data which will be used to demonstrate the principle behind the 

correlation function. The two lines represent the speed observations over a number of time periods for 

two separate links. The correlation function, first subtracts the mean value of each link from each data 

point. This transforms the data series so that ‘peaks’ in the data generally have values greater than 0 and 

‘troughs’ generally have data less than 0. When analysing the full dataset a moving average is used 

instead of the series mean value to avoid seasonality effects. The data is also normalised so that data from 

links with different speed limits can also be compared. 

The images in figure 3.3 show the transformed data as dotted lines. The correlation function then 

multiplies the corresponding data points from the two links; this is shown by the solid blue line. Where a 

peak in the data for one link corresponds to a peak in the data for the second link, the product is a large 

positive value. The same is true where there are matching troughs in the data (-ve x –ve = +ve). Where a 

peak in one dataset coincides with a trough in the second dataset, the product is a large negative value. 

The correlation between the two time series is therefore the area under the blue line. 
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Figure 3.3 Correlation of sample data at Ƭ=0 (left image) and Ƭ=-1 (right image) 

 

The left image in figure 3.3 shows what happens when the data from the two sample links is compared. 

The correlation of the two links is then checked for a variety of lags by offsetting the data from one link. 

The right image in figure 3.3 above shows how the correlation changes as the ‘green’ link is offset to the 

left by one time step. The correlation improves, but not significantly. However, figure 3.4 below shows 

what happens when the offset is increased to two time steps. This shows a marked increase in correlation 

with very few negative values and would indicate a high correlation between the conditions on the ‘red’ 

link and those on the ‘green’ link, two time steps later (10 minutes in this case). 

Figure 3.4 Correlation of sample data at Ƭ=-2 

 

This process is repeated for a number of lag values (from five minutes to one hour in our analysis) and the 

correlation is calculated at each time step. Figure 3.5 shows the correlation results for the sample data for 

a variety of lag values. This confirms that a lag of two time steps provides the best correlation. 
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Figure 3.5 Correlation result vs lag for sample data 

 

In addition to comparing data from two different links, it is possible to compare data from the same link 

against itself. The purpose of this is to determine if there are any cyclic patterns within the data which 

could then be predicted by the ARMA function. Once the best lag value has been determined, this can be 

applied to the appropriate dataset and the least squares method can be undertaken to assess the 

goodness of fit. This analysis is shown for the sample data in figure 3.6. 

Figure 3.6 Regression of sample data with Ƭ=-2 

 

Figure 3.6 clearly shows there is a good fit between the two data series, once the lag has been corrected. 

The coefficient of determination (R2) is shown on the graph to be 0.74 which indicates a reasonable 

closeness of fit (a value of 1 would be a perfect fit). Furthermore, the F statistic for the sample data is 94.9 
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which is substantially higher than the critical-value of 4.14, indicating that it is highly unlikely this 

relationship occurred by chance (in fact, the probability of this match occurring by chance is calculated as 

0.00001%). 

The above calculation can take a long time when done for large datasets such as that used in this study. If 

every link was compared against every other link, this would require nearly 185,000 correlation tests to be 

undertaken. Clearly it is impractical to undertake that number of tests, particularly when a range of time 

offsets between each link pair is also considered. 

A small number of links were therefore chosen at random to be the focus of the initial analysis and the 

correlation function was used in an attempt to identify the ‘lag’ and the strength of the relationship 

between those links and every other link. Some typical results of are provided below in table 3.2. 

Table 3.2 Indicative results of preliminary correlation analysis 

Link A Link B Lag value with max 

correlation 

Correlation result R-squared value 

428 10,580 Ƭ=-1 0.45 0.09 

428 109 Ƭ=-1 0.68 0.36 

10,080 652 Ƭ=-1 0.34 0.02 

10,080 38 Ƭ=-1 0.50 0.13 

677 212 Ƭ=-1 0.38 0.03 

677 223 Ƭ=-1 0.56 0.25 

 

As can be seen in table 3.2 the correlation between links was generally very poor with typical R2 values of 

0.1 or less. The maximum R2 value returned by these initial results was around 0.4 which still indicates a 

poor goodness of fit. Most link pairs examined in this analysis indicated that the optimum lag value 

should be one time step (or five minutes) despite the fact that some of the pairs were at opposite ends of 

the road network. 

On the basis of these results, several further attempts were made to identify relationships between pairs 

of links, this time by selectively grouping links on the basis of their proximity. Unfortunately, none of 

these tests provided any significant improvement on the results from the initial analysis. 

The results from the second, more selective analysis were surprising since the link pairs used in these 

tests were mostly adjacent to each other, and it was expected that the correlation should have improved, 

if only slightly. After further examination of the analysis, it was concluded that the reason for the equally 

poor results was because the cumulative journey time along the link pairs was shorter than the five-minute 

observation interval in nearly all cases. The analysis did not compare data with a zero lag value, as this 

relationship (while potentially significant) is not useful for the purposes of predicting speeds on the 

downstream link. By the time data has been collected for a particular link and the predictive calculations 

undertaken, the vehicles to which the prediction is relevant will already have passed through the link. 

Further pairs of links were therefore selected, this time focusing on longer links where journey times were 

likely to be in excess of five minutes. Two link pairs were identified which met these requirements and the 

results of the correlation tests on these link pairs are shown in table 3.3. 
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Table 3.3 Results of correlation analysis on long links 

Link A Link B Lag value with max 

correlation 

Correlation result R-squared value 

243 247 Ƭ=-1 0.64 0.30 

262 266 Ƭ=-1 0.624 0.35 

 

Table 3.3 shows that the R2 values are still low for these links indicating that there is not a good 

correlation between observations on these link pairs. Despite this, it was decided to attempt to fit an 

ARMA model to this data. 

Numerous different types of ARMA model were considered although most were not appropriate for this 

problem. In the end, three different ARMA models were investigated, all of which had been used in 

previous research: the general auto-regressive integrated moving average (ARIMA), auto-regressive 

distributed lag and vector auto-regressive moving-average (VARMA). In fitting an ARMA model to the 

observed data, there are a number of parameters which must be estimated. This is done using an 

optimisation routine which attempts to find those parameters which minimise the residual errors between 

the model and the observed data. This is a complex process and is undertaken using specialist statistical 

software. The output from the analysis is a measure of the statistical significance of the model and a 

summary of the residual errors. As expected, all three ARMA methodologies produced similar results to 

those already reported by the simpler correlation test. Furthermore, the results indicated a large number 

of unexplained residual errors, showing that the models were not a good fit for the observed data. 

A further test was undertaken which included weather data in an attempt to reduce the residual errors. 

This test proved difficult as the analysis had to be undertaken simultaneously on multiple variables and 

had to be limited to the period where the two data sets overlapped (ie June 2012 to January 2013). In the 

end, the complexities of incorporating the weather data meant that only the ARIMA method could be used 

and the output from this analysis was worse than those achieved previously. 

Further analysis of the data revealed significant fluctuations in average vehicle speeds on some of the 

links used in the analysis. For example, the speed on link 262 varied between 20km/h and 100km/h; 

given the distance between this link and the downstream link, 266, the ‘lag’ between the two links could 

vary from two minutes to over 10 minutes. This meant that the time offset required between the two 

offsets would vary from 0 to two time steps. This could explain the difficulties in fitting the ARMA models 

to the observed data. Additional tests were undertaken which attempted to calculate the time offset 

between links more accurately based on vehicle speeds. Initial spreadsheet testing of this hypothesis 

seemed to indicate a potential improvement in correlation but unfortunately, it ultimately proved 

impossible to manipulate the data in such a way that it could be input to the ARMA model. 

Generally speaking the analysis into the use of ARMA models proved to be inconclusive, with very weak 

statistical relationships best described as ‘tenuous’. It can only be concluded that this method is not best 

suited to the topography of the Auckland road network and the data available. Previous studies which have 

examined these techniques appear to have mostly concentrated their efforts on simpler networks, and the 

method may work better if analysis is confined to a long, single stretch of road with detectors spaced at 

regular intervals.  

During the analysis into the ARMA methodology, the only significant results were obtained when data from 

a particular link was compared against itself (auto-correlation). For example, the autocorrelation of link 

296 produced an R2 value of 0.88 for a lag of five minutes. Several other links produced similar results. 
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This may simply be because the speeds on these links did not fluctuate significantly. Nevertheless, it may 

indicate that there are cyclical patterns on these links which could be utilised with a simpler methodology 

such as the non-linear time series analysis which is described below. 

3.4.2 Expansion of the time-series methodology 

Evidence gathered during the literature review indicated that non-linear time-series analysis could give a 

more accurate prediction than the ARMA methodology explored above. However, this method for 

predicting travel times is severely limited in terms of the achievable prediction horizon. It only allows 

travel times to be predicted for one time-step in the future. The time-step itself is dictated by the sample 

intervals of recent historic data. So if data is read in five minute intervals, the model can only predict five 

minutes into the future. To predict 10 minutes into the future the data would need to be aggregated into 

10 minute intervals, but the accuracy of the predictions then suffers due to the reduction in the detail of 

the historic data. 

There have been a number of papers which have examined ways in which the short-term prediction 

horizon could be extended slightly (for example to 10, 15 or 30 minutes); ultimately, these have all been 

limited in their success. However, it may be possible to make larger increases to the prediction horizon (ie 

to a day or even a week). While this may seem counter intuitive given that accuracies decrease significantly 

as the horizon increases, once it is extended to 24 hours more patterns start to emerge which could be 

predicted. Certainly, some of the research into ARMA models has concluded that the best lag value is 24 

hours (in other words, the travel time on a particular link can be better estimated from yesterday’s data 

than from data five or 10 minutes ago). Using the non-linear method in this way would mean that the 

travel times at 9am next Monday morning are predicted based on a time-series analysis of travel times at 

9am for the last n Mondays. 

To explore this issue, time series were created by taking the speed on each of a number of links at a 

specific time each day (eg 8:30am, 1pm, 7pm), or a specific time on a specific day of each week (eg 

Monday 9am, Saturday 12:30pm). The analysis into the ARMA methodology had already demonstrated that 

there might be a cyclical pattern to the data over short periods, and further analysis showed this might 

also be true for daily or weekly time offsets. 

The non-linear method works by predicting the change in the Hölder exponent (which describes the 

concavity or convexity of the time-series curve at a given point). Without building a fully working 

predictive model to test the method, it stands to reason that any time series in which the Hölder exponent 

changes only gradually should lend itself to this method. In other words, if the Hölder exponent has a 

similar value at the same time each day this would be indicative of a similar profile of vehicle speeds (even 

if the absolute speed values varied). Examination of the weekly time series shows this to be the case, with 

seasonal changes resulting in small week-on-week changes, bar a small number of exceptions. However, 

the daily time series tests were less conclusive, largely due to the large differences between weekday flows 

and speeds compared to those at the weekend. 

Overall, the examination of the daily and weekly time series indicate that the non-linear time-series 

analysis method may be able to provide reasonably accurate medium-term predictions. 

3.4.3 Regression against weather data 

In addition to the two methods above, the weather data has also been compared against journey times to 

determine if there is any statistical relationship between the two datasets. Initial regression analysis 
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indicates that there may be some correlation between journey times and the limited weather data 

provided. The strength of the relationship is not sufficient that the weather could be used as the primary 

means to predict journey times, but combined with another method (for example the time-series analysis) 

this could increase the accuracy of predictions. 

However, there is substantial difficulty in combining the two techniques, ie to adjust the time series 

output to take account of weather, there is a need to similarly ‘un-adjust’ the historical data that is input 

to the time series analysis. As a result of this complexity and the poor quality of the weather data, this was 

not attempted as part of the research. 

3.5 Data review and modelling conclusions 

The ARMA method could potentially be used to increase the accuracy of predictions in the short term (five 

to 30 minutes) thereby improving traffic management. However the findings from our analysis are 

generally inconclusive.  

The non-linear time-series analysis method proposed by D’Angelo et al (1999) is more accurate at very 

short-term predictions (five minutes), but is limited in its prediction horizon. We looked into the possibility 

of extending this method to have prediction horizons of one day or one week. Initial analysis comparing 

some of the data to the model function indicated it could be possible to build a model based on this 

principle, thereby improving the accuracy of journey times for the purposes of travel planning. 

Based on the analysis to date, there is little confidence that the ARMA methodology would provide any 

improvement over existing prediction techniques, and hence there would be no benefit in undertaking any 

additional analysis of this methodology. The conclusion of this stage of work was that the non-linear time-

series methodology should be taken forward to the next stage which was to build a test model around the 

methodology. This process is described in chapter 4. 
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4 Model development 

4.1 Overview 

In the final stage of the project, a model was constructed around the preferred methodology. This model 

took inputs from the available data as if they were ‘real-time’, these inputs were processed by the model 

algorithm and a prediction of journey times was made. These journey times were then compared against 

the actual observations so that the accuracy of the model could be determined. 

4.2 Predictive function 

Following the findings of the literature and data reviews, the chosen methodology was based on a non-

linear time series analysis technique proposed by D’Angelo et al (1999) in their paper Travel-time 

prediction for freeway corridors. Rather than attempting to predict values in the time series directly, the 

study proposed that the curvature of the time series could be predicted more accurately and used to 

derive the next value in the series 

For each value in the time series, the following equation describes the curvature of the data: 

 

(Equation 4.1) 

Where S is the average vehicle speed on the segment, and the subscript denotes the time step (n is the 

current time step, n-1 is the last time step and n+1 is the next time step). In the equation, α is known as 

the Holder exponent. If the Holder exponent is 1 then the values in the time series are linear (ie they are 

increasing or decreasing by the same amount in each time step). If the Holder exponent is less than 1, 

then time series is ‘curved’ downwards at that point; similarly values greater than 1 represent points 

where the time series is ‘curved’ upwards. Figure 4.1 shows some example data curves with Holder 

exponents equal to, less than or greater than 1. It can be seen that the Holder exponent has no bearing on 

whether the data series is increasing or decreasing, but simply the rate of change in the data’s slope. 

As the equation used to calculate the Holder exponent requires data from both the preceding and 

following time steps in the series, it can be seen that the Holder exponent can only be calculated for 

historic observations. However if the value of the Holder exponent could be predicted for the current time 

step, then the next value in the time series could be derived. 

 

∝𝑛𝑛= log3
(𝑆𝑆𝑛𝑛−1 + 𝑆𝑆𝑛𝑛 + 𝑆𝑆𝑛𝑛+1)

𝑆𝑆𝑛𝑛
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Figure 4.1 Illustration of different curves and their equivalent Holder exponent 

 

The Holder exponent itself can be predicted by examining recent historic data and how this changes over 

time. The assumption is that the change in the speed of vehicles over time is similar to a wave function. 

Although the amplitude of the wave may vary, the basic shape of the wave (ie the rate at which the 

average vehicle speed changes) should always be similar for each road segment as this is a function of 

both the road geometry and driver behaviour which can be considered constant. The model examines the 

recent time series data and attempts to identify where similar wave patterns have appeared in the past and 

use this as the basis of the prediction. Figure 4.2 shows how this process works. 

Figure 4.2 Sample data to illustrate model behaviour 

  

The process begins by calculating the Holder exponent for each of the 30 most recent observations. These 

are recorded above the data series in figure 4.2. The model then takes the Holder exponent for the 

previous observation (which is 1.13 in this case) and compares it to the exponents of the earlier data. In 

the sample data, there are two occurrences: a Holder exponent of 1.14 at S
n-27

, and 1.12 at S
n-20

. The model 
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then examines the values of the Holder exponents that immediately follow these occurrences (ie at time 

steps S
n-26

 and S
n-19

). In our example, these have the values 1.04 and 1.09 respectively. On the basis of 

these new values, the model can predict that the Holder exponent for the current time step is going to be 

similar. In this case, we can assume that this value is likely to be around 1.065. 

Once the most likely value of the Holder exponent has been predicted for the current time step, the 

following equation can en be used to calculate the corresponding speed value for the following time step. 

 

(Equation 4.2) 

It can be seen from figure 4.2 that if a simple linear prediction was made, the average vehicle speed would 

be predicted to decrease in the next time step (as shown by the blue, dotted line to the right of the 

figure). However the prediction returned by the model (indicated by the green, dashed line) shows a slight 

increase in vehicle speeds which is much more likely. 

4.3 Model construction 

The model was constructed within an Excel spreadsheet for the purposes of demonstration. Excel was 

used so that each of the steps within the process could be seen clearly, allowing for easier debugging. A 

more efficient process would need to be created if this process was to be used in a production 

environment. 

The model undertakes predictions for individual links, but over the entire date range for which data has 

been provided. The model was created in this way to reduce the volume of data which needs to be stored 

within the Excel spreadsheet. Again this differs from how the model would work in production, where only 

the most recent data would be imported but for all links; the prediction would then be undertaken for a 

single time step for every link. 

Within the spreadsheet model there is a drop-down list containing all the links within the study area. Once 

a link has been selected, the data for that link is read into the spreadsheet from the main database, using 

a Visual Basic macro. Any gaps in the data are infilled, interpolating speed data and journey time data 

where necessary. 

A second Visual Basic macro is then used to step through each of the values within the time series and 

undertakes the following process for each time step: 

• A table within the spreadsheet reads the vehicle speed and journey time data from the 30 

observations prior to the current time step and the Holder exponent is calculated for each. 

• A second table is used to identify those Holder values which are similar to the last time step and then 

to determine the most likely value of the current time step. 

• The speed value for the next time step is then calculated. 

• A comparison is made between the prediction and the actual value so that the accuracy of the model 

can be measured. 

These comparisons are stored in a separate results table for later analysis. The model then moves on to 

the next time step and the process is repeated for the entire data set. 

𝑆𝑆𝑛𝑛+1 = (3∝𝑛𝑛 − 1)𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑛𝑛−1 
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The predicted value of the Holder exponent at each time step can actually be determined in a number of 

ways and we have created several versions of the model which use different methods in an attempt to find 

the best one. In the original study by D’Angelo et al (1999), a method was used which grouped the earlier 

values of the Holder exponent into a number of equal intervals, counting how many of the time steps fell 

into each interval to determine the most frequently observed value (effectively creating a Markov model at 

each time step). We found through experimentation that simply taking an average of the appropriate 

values provided similarly accurate results. 

The model is set up to predict speeds for the next value in the time series only. This means that the 

prediction horizon of the model (how far into the future the vehicle speeds can be predicted) is limited to 

the time interval of the observed data. As the data is recorded every five minutes, this is the default 

prediction horizon used in the model (and was also the prediction horizon used in the original study). 

However, we have set up the model so that, for example, every second observation is used to provide a 

10-minute time step and therefore a 10-minute prediction horizon. The model allows any time step 

interval/prediction horizon between five minutes and one week to be used, although the accuracy 

decreases as the prediction horizon increases, as explained in section 5.3.
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5 Results 

5.1 Testing process 

The model was tested for all links for which data was available. For each link, predictions were made for 

every five-minute interval for a one-week period. The reasons for making predictions for a single week 

were due to limitations in processing power; running predictions for the whole network for a single 

prediction horizon for one weeks’ worth of data took more than 24 hours of computing time. 

This is good news for the model, as it means that real-time data can be processed in slightly less time 

than the observation interval. However when attempting to test the model using a large dataset, the 

runtimes were unacceptably large. If the entire dataset had been used, it would have taken nearly two 

months to extract the results for a single prediction horizon, or more than a year for all of the tests we 

were proposing. 

The model was tested using seven different prediction horizons, ranging from five minutes to one week. 

To calculate the accuracy of predictions a comparison was made between the predicted value and the 

actual observed value for each time-step and each link. This difference is expressed as a percentage error. 

The results for each link are summarised for each link in two ways:  

• The average percentage error on each link over all time steps (measure A). 

• The percentage of time steps on each link where the percentage error is less than 10% (measure B). 

The results of these tests are summarised below. 

5.2 Initial findings 

The model was initially tested using a five-minute prediction horizon, so that its accuracy could be 

compared against the original study. The results of these initial tests show that, for around one sixth of 

the links, the model is able to accurately predict future journey times (more than 85% of time steps have 

errors less than 10%). The results for a sample of links are provided below in table 5.1. 

Table 5.1 Model accuracy (5-minute prediction horizon): most and least accurate links 

Link ranking (by criterion B) Carriageway 

segment ID 

A) Total average error B) Percentage of 

predictions with <10% error 

1 (most accurate) 400 0% 100% 

43 (90th percentile) 120 6% 85.3% 

107 (75th percentile) 78 6% 76.4% 

215 (median) 235 9% 64.5% 

322 (75th percentile) 10,090 14% 51.6% 

430 (least accurate) 10,099 2,971% 17.5% 

 

The above table is deceptive in that it appears to show that the total average error (measure A) is low for 

the majority of links, with the 75th percentile link having a total average error of just 14%. However, this is 
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because the table ranks each link in terms of their performance on measure B. On close inspection of the 

underlying results, it is apparent that links with similar measure B performance can have significantly 

different results for measure A. For example, the median link has an average error of 9%, but the link 

ranked immediately above this has an average error of 93% despite having an almost identical result on 

measure B (64.5%). In total, only around 43% of links have less than a 15% total average error for measure 

A. Figures 5.1 and 5.2 show this more clearly by illustrating the distribution of results for both measures. 

Figure 5.1 Distribution of results for measure A 

  

Figure 5.2 Distribution of results for measure B 
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It can be seen from the figures above that while there is a normal distribution of results for measure B, 

there are two distinct groups of links when they are compared on measure A. Nearly half of the links (188) 

have an average error of less than 20%, while a similar number (224 links) have an average error of more 

than 100%. There are only 18 links which have an average error between 20% and 100%, suggesting that 

there may be some characteristic which prevents the prediction algorithm from working on certain links.  

Some analysis was undertaken to establish the reason for the poor results, by comparing results against 

known characteristics of the links (eg link length, traffic volume). The results indicate there is no single 

characteristic that explains why some links should give much better results than others. A summary of 

some of this analysis is presented below. 

Figure 5.3 demonstrates how the predictive ability of the model (using measure A) compares to the link 

length. It is logical to assume that percentage errors would be higher for shorter links (as absolute errors 

would be larger relative to the observed journey times), and that this may be one reason for the 

contrasting results. However, the evidence does not support this and figure 5.3 clearly shows that 

accurate predictions are possible for short links and that, equally, some longer links are producing large 

percentage errors. 

Figure 5.3 Comparison of model accuracy versus link length 

  

There are many link characteristics which are not quantified in the data provided, for example the 

proximity of the link to major intersections. In an attempt to identify some of these characteristics, and to 

determine if they are a determinant factor in the model performance, the model results were plotted 

according to the link location. Figure 5.4 shows graphically how prediction accuracy differs by location 

across the network. It appears from this figure that the links with accurate predictions tend to be located 

between major intersections, indicating that the reason for poor prediction results on some links may be 

related to the intersections. This may suggest that some links are simply more prone to congestion and 

hence the journey time on these links is much more varied and difficult to predict. 
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Figure 5.4 Model accuracy (5-minute time step): prediction error by location 

 

Another analysis tool that was used looked at how prediction accuracy varied over a single day, and 

compared this for a link with good predictive results against another link with poor results. Figure 5.5 

shows data for a segment with an average of error of 1%, compared with figure 5.6 which shows data for a 

segment with an average error of 20%. 

It can be seen from these two figures that the variation in journey times is broadly similar for both links, 

with constant fluctuations throughout the day. Figure 5.6 shows there are three noticeably large 

prediction errors which could account for the increased average error. However, this does not explain why 

only 38% of the predicted values are within 10% of the observed values for this link segment, compared 

with 98% for the link segment shown in figure 5.5. 
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Figure 5.5 Model accuracy (5-minute time step, 1-day period): predicted times vs observed times, segment 709 

  

Figure 5.6 Model accuracy (5-minute time step, 1-day period): predicted times vs observed times, segment 229 

 

Closer examination of the two plots above highlights two interesting aspects which may give clues to the 

model’s incongruent results. First, in both figures, the prediction algorithm tends to exaggerate every 

peak and trough, suggesting that it is oversensitive to sudden changes in journey times. There is potential 

for some improvements to be made to the model algorithm to dampen this effect, increasing model 

accuracy for all links.  
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Second, although the average journey time across the day is similar for both links, the journey time on the 

‘poor’ segment (figure 5.6) drops between the hours of 11pm and 5am. Examination of the underlying 

data shows that this corresponds to a significant reduction in vehicles to just one or two vehicles every 

five minutes. The same analysis of the ‘good’ segment shows that it carries a much higher volume of 

traffic all day and that the overnight volume remains relatively high. This indicates another potential 

reason for the contrasting results. Comparison of the prediction results for individual time steps on the 

‘poor’ link against vehicle flow for the same time step was undertaken and this is shown in figure 5.7. 

Unfortunately, there is no apparent correlation, but the relationship between link flow and prediction 

accuracy could be explored further. 

Figure 5.7 Model accuracy (5-minute time step, 1-day period): prediction error vs segment flow, segment 229 

  

In summary, the model is able to make accurate predictions for many of the links, but there is some 

characteristic of the other links which results in poor prediction results. Analysis of the links indicates that 

there is no single characteristic causing this, but the proximity of the link to intersections and low 

volumes may be contributing factors. 

5.3 Testing for longer prediction horizons 

All links were also tested for a variety of prediction horizons and the results of this analysis indicate that 

for those links where journey times can be accurately predicted over a five-minute horizon, reasonable 

accuracy can also be achieved over a longer prediction horizon. Figure 5.8 shows how five-minute 

accuracies compare against one-week accuracies for all links. 
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Figure 5.8 Impact of prediction horizon on model accuracy (measure B) 

 

The figure above clearly shows a good correlation between five-minute accuracy and one-week accuracy, 

with the latter being slightly lower in nearly all cases.  

To examine how the accuracy of the model changes as prediction horizon increases, the results of an 

individual link are presented in table 5.2. This table clearly shows that the accuracy of the modelling 

deteriorates slightly as the time-step interval increases. 

One interesting point to note is that when the time-step interval is set to one day, there is a significant 

reduction in model accuracy. This is because the prediction algorithm is taking consideration of journey 

times at the same time every day for the previous 30 days, which includes a mixture of weekdays and 

weekends. If the model could be adapted to only consider the previous 30 weekdays, the result would 

probably improve. We have not been able to test this hypothesis at the present time. 

The table does show, however, that even with a time step of one week, the model can still be reasonably 

accurate with an average error of just 8%. If the issue preventing accurate predictions for certain links can 

be overcome, this result indicates that it could be possible to predict journey times up to a week in 

advance for all links. 

Table 5.2 Impact of prediction horizon on model accuracy (link 715) 

Time step interval Average error Percentage predictions <10% error 

5 minutes 2.29% 96.86% 

10 minutes 3.98% 90.77% 

15 minutes 4.94% 87.21% 

30 minutes 6.15% 83.18% 

1 hour 7.88% 77.67% 

1 day 24.68% 67.26% 

1 week 8.00% 73.49% 
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6 Lessons learnt 

This section outlines the key lessons which have been learnt from this research. It is intended to provide 

decision makers within the transport sector with guidance for the further development of a travel time 

predictability system. 

6.1 Data 

6.1.1 Data quality 

The accuracy of the data available provided some issues and limitations in the development of a successful 

model.  

The traffic data (flows, segment speeds) was generally of good quality, although there were large gaps in the 

data where detectors were clearly out of action for long periods. Only one link (out of nearly 500) contained 

a full 13-month period of data with no missing observations. In total, 5.2% of all observations across all links 

were missing from the data, although a small number of links had detectors which were malfunctioning or 

switched off for several months and accounted for most of the missing data. The majority of links had only a 

few days’ data missing at some point over the period. Most links had between 100 and 1,000 missing 

observations. Although, these seem minor, when undertaking a complex modelling process and looking for 

patterns between data sets, it is critical to have accurate and reliable data. 

The weather data was of very poor standard. The data is incomplete, with rainfall and solar radiation 

provided for just one of the five sites. Furthermore, the data covered the wrong period (June 2012 to June 

2013 rather than January 2012 to January 2013). This made it very difficult to make any use of the data 

provided. 

There were also issues with the incident data. It was always expected that unplanned events would not be 

very well recorded, and examination of the data showed this to be the case with just 401 incidents over a 

13-month period. More than half the recorded incidents (208) were listed as ‘Cautions’ and were usually 

associated with maintenance issues such as lack of street lighting or mud on the road which did not 

necessarily equate to delays on the network. The dataset did contain a sufficiently large number of 

planned events, but many of these were for full road closures and were not very specific about time or 

location, or if they even went ahead as planned. 

Any future work undertaken would need to ensure that accurate and reliable data could be provided 

across the network of interest. 

6.1.2 Rationalisation of base data 

The investigation into different forms of relationship between modelled and observed journey time 

involved the use of the entire data set. It is acknowledged that due to gaps in the data and some doubts 

over the accuracy and reliability of the data, that this could have influenced the strength of any resulting 

relationship. If additional research does eventuate on this topic, it is recommended that appropriate time 

be spent on sorting the data to produce sub sets defined by: 

• weekday and weekend  
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• highway links free from the influential effects of ramps or intersections on neighbouring roads 

• links categorised by speed limit 

• links categorised by different ADT range bands 

• incident and non-incident data sets 

• inclement weather. 

It is felt that if such a rationalisation of data could be undertaken at the front end of the project, stronger 

modelling outcomes may well be achieved and it would be possible to better understand the key 

parameters influencing the accuracy of travel time predictions and their effects.  

6.2 Statistical modelling approach 

The literature review which was undertaken identified two main prediction models which could be used to 

undertake travel time predictability analysis. These included: 

• a simulation method 

• a statistical method. 

The simulation method requires the development of a transport model where traffic demand is simulated 

and calibrated in real-time based on incoming traffic data. The second method relies on the estimation of 

mathematical functions based on historical data which calculate future traffic speeds based on current 

network conditions. 

It was clear from the review that there are significant limitations with the statistical method, but it is much 

simpler and quicker to implement and easier to maintain. For study areas which are suited to the 

statistical method then this would offer the best option. This would include simple strategic trunk or 

motorway networks with limited route choice and signalised junctions. For more complex networks such 

as city centres or other urban areas, the simulation method would be recommended. 

The study network adopted for this research was a motorway corridor with fixed access and egress points, 

which is perfectly suited to the statistical method. The simulation modelling approach is unlikely to add 

much value without significantly increasing the resource requirement to build a complete traffic demand 

model. As such, it was recommended that the statistical method be used for this study. 

Although the motorway network could be classified as simple in comparison with a city centre, the 

Auckland motorway network does include some complicating factors, which include closely spaced 

intersections, ramp signalling, variable message signs and speed limits in some locations, and frequent 

changes to the motorway structure (lane drops, gains etc). Although the use of a simulation model would 

require significant data collection and calibration, given the complexities of the network mentioned above 

and the outcomes of this research, future studies may be better focusing on the simulation model 

approach. 
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6.3 Motorway network 

For the purposes of this study the full Auckland motorway was investigated. This allowed assessment of 

all the data and links, and improved the likelihood of identifying a location where travel time predictability 

could be assessed and analysed further. Given the complexity of the network and significant data 

requirements, any future studies could focus on a smaller section of the motorway network. Although this 

might limit the likelihood of finding correlation between links and data, it would allow more intimate 

assessment of the factors which are impacting on the ability to predict travel times along the network. 

Again, the success of this approach is very much dependent on the quality and reliability of the data 

available. 

There was a wide range of factors which impacted on the ability of the model to predict travel times. As 

part of this research, investigations were undertaken on the features which limited the success of the 

model, leading to the conclusion that the following features of a motorway network would be best suited 

to a statistical modelling approach: 

• Simple network – minimal on and off ramps and other motorway features which change traffic 

patterns. 

• Full, accurate and reliable data – correlation of data sets is critical to the success of the model and 

travel time predictability.   

• Link length – the length of the link needs to exceed the time interval being assessed to allow 

improved possibility of correlation, for example, in a 100km/h zone and with an interval of five 

minutes, the link lengths should exceed 8.33km. 
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7 Conclusions 

7.1 Current state of research  

A comprehensive literature review was undertaken which examined a wide range of previous studies and 

research. The outcome of this review indicated that of the two potential solutions the statistical approach 

was the most suitable, based on the availability of the data and the client’s requirements. 

7.2 Data sources  

A detailed analysis was undertaken of the available data, using two different statistical methodologies. The 

research indicated that no conclusive results emerged using the auto-regressive method, but that non-

linear time series analysis techniques might provide the basis for a suitable prediction tool. 

7.3 Forecasting model 

A demonstration model was built based on the non-linear time series analysis technique. The model was 

able to accurately predict journey times over a five-minute horizon for certain links, but was inaccurate for 

other links. For those links where the model was able to produce an accurate five-minute prediction, it was 

also capable of predicting journey times with reasonable accuracy up to one week ahead. 

7.4 Summary statistics 

Analysis was undertaken to identify the factors that might influence the model’s ability to accurately 

predict times for certain links and not others. There appeared to be no single contributory factor and 

there was no clear correlation between model accuracy and traffic volumes or link length. Spatial analysis 

of the results indicated that links in the vicinity of major intersections might tend to demonstrate poorer 

prediction accuracies. 

7.5 Overall conclusion 

The study concluded that overall it was currently very difficult to predict journey times using the statistical 

method and current data availability with sufficient accuracy across the Auckland network. However, the 

research indicated that accurate predictions are certainly possible in some situations and that further 

study may result in improved accuracy across the network. 
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8 Recommendations 

While it is disappointing that the model accuracy was not better for all links, there were still a number of 

positive outcomes from this research which could be taken forward. It is encouraging that the model was 

able to predict travel times for certain links with such a high level of accuracy, and it would be hoped that 

this could be extended to other parts of the network as well.  

There are a number of areas where further research could be undertaken, in an attempt to improve the 

model further: 

• As discussed in earlier notes, there are a number of issues with the underlying data, namely that there 

are large gaps in the data for some of the links. Sourcing of improved or alternative data sources, or 

improved interpolation may result in more accurate predictions. 

• Further analysis needs to be undertaken on the results of the current model to better understand the 

reasons for contrasting results. This may need to look at characteristics of the links which are not 

quantified in the current data set (eg proximity to major intersections, number of lanes and/or road 

geometry). 

• Further analysis of the effect of traffic volumes on the prediction accuracy is required. Clearly, low 

volumes will be more difficult to predict and at these times it may be appropriate to substitute the 

model output with an average observed journey time from historical data. It may also be necessary to 

remove some links from the dataset where journey times are erratic or link lengths are short. A 

process of combining data from adjacent links to form longer segments may also improve accuracy. 

• There are a number of potential improvements which could be made to the model algorithm, by 

focusing on those links which currently give good results. Additional study of alternative methods for 

determining the most likely Holder exponent could improve predictions significantly. This is evidenced 

by figures 3.5 and 3.6 which clearly show that the prediction algorithm is over-sensitive to sudden 

changes in journey times. 

• There should also be consideration of additional explanatory variables, such as the weather, which 

could not be considered in this study due to data issues. 

If any further study is successful in improving overall prediction accuracy, then it may be prudent to revisit 

some of the earlier data analysis, particularly the tests which examined the potential of ARMA prediction 

methods. As discussed earlier, the results of these analyses indicated that the ARMA methodology was not 

suitable. At the time there was an assumption that a constant ‘lag’ value could not be found due to the 

varying vehicle speeds and/or segment lengths. In retrospect, the inability to find any significant results 

may have been due to other link-specific issues explored in this report. It may be the case that, if the 

dataset is limited to those links with good predictive results from the time series analysis, then more 

favourable results may also be obtained using the ARMA method. 
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Appendix A: Survey of travel time prediction 
studies 

A survey of travel time prediction studies is shown below in table A.1. The table summarises the modelling 

approach, the case network studied and the key findings (as reported by the study). 

The review of the studies shows that the statistical approach was most used most predominantly when the 

study network was a corridor with a limited number of links and junctions. This modelling approach does 

not require information regarding the origin and destination of trips, zones or route choices. The forecast 

run-time is quick and in most of the examples provided this approach has been capable of accurate 

predictions. 

The simulation method has been used to model larger or more complex areas. However, the number of 

examples of this type of model is lower than for the statistical method.  



Appendix A: Survey of travel time prediction studies 

49 

Table A.1 Example studies and modelling approaches 

Paper/study Author, year of 

study 

Prediction methods Case network Key remarks 

Forecasting traffic flow 

conditions in an urban 

network. 

Kamarianakis 
and Prastacos 
(2003) 

Statistical modelling, ARIMA, 
VARMA, STARIMA (space–time 
ARIMA). 

Major arterials in the city of 
Athens, Greece. Data sets include 
data of 25 loop detectors.  

A comparable forecasting performance for the ARIMA, 
VARMA, and STARIMA models was carried out. The 
historical average model could not cope with the 
variability of the data sets at hand. 

Modelling traffic 

volatility dynamics in 

an urban network 

Kamarianakis et 
al (2005) 

Statistical modelling, generalised 
autoregressive conditional 
heteroscedasticity (GARCH) time 
series. 

Major arterials in the city of 
Athens, Greece. Data sets include 
data of 11 loop detectors.  

ARIMA and GARCH features are combined and provide 
reasonably accurate forecasting traffic flow levels. 
Confidence intervals are provided as well. 

Statistical evaluation of 

I–4 traffic prediction 

system 

Ishak and Al-

Deek (2003) 

Statistical modelling, time series 

and generalised linear model used 

to show the effect of several 

factors on the overall performance 

of the system. 

40-mile corridor of I–4 in 

Orlando, Florida. The prediction 

performance in terms of 

prediction errors was examined 

using both link-based and path-

based approaches. 

This study suggested that the effect of the prediction 

horizon on the model performance increased under 

congested conditions as a result of the high level of 

instability in traffic conditions.  

Travel time prediction 

for urban networks: the 

comparisons of 

simulation-based and 

time-series models 

Hu and Ho 

(2010) 

Statistical modelling and dynamic 

modelling, ARIMA and simulation-

based model, calibrated based on 

variable demand flow data. 

An arterial street in Kaohsiung 

city in Taiwan. 

Simulation-based travel time prediction model and the 

ARIMA model provide reasonable travel time information.  

Travel-time prediction 

for freeway corridors 

D’Angelo et al 

(1999) 

Statistical modelling, non-linear 

time series model. 

18km freeway section in 

Orlando, Florida. 

Single-variable and multiple-variable predictions were 

carried out. In single-variable prediction, speed time-

series data were used. Speed, occupancy, and volume 

data used to develop a multiple-variable prediction of 

corridor travel times. The prediction performance of the 

calibrated single-variable model was shown to be 

superior to the multivariable prediction schemes. This 

new approach produced reasonable errors for short-term 

(5-min) travel-time predictions. 
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Paper/study Author, year of 

study 

Prediction methods Case network Key remarks 

Real-time prediction of 

traffic congestion 

Ben-Akiva et al 

(1992) 

Combined models, DYNA dynamic 

traffic model system includes 

statistical model, dynamic traffic 

assignment, dynamic ODt 

estimator. 

– This paper provided short descriptions of a monitoring 

system and a model system that was developed to 

predict traffic conditions as a first step towards 

providing such guidance. The study discussed a 

conceptual framework and introduced a prototype 

model.  

IBM traffic prediction 

tool (TPT): a pilot study  

IBM, not 

published 

Statistical modelling, ARIMA, 

VARMA.  

30.45km long stretch of 

northbound motorway in the 

Auckland region, New Zealand. 

Performance of traffic prediction tool on the freeway 

stretch during both peak periods with huge volatility and 

off-peak periods with a relatively stable pattern is 

presented. 

Road traffic prediction 

with spatio-temporal 

correlations 

Min et al (2007) Statistical modelling, ARIMA, 

VARMA. 

A sample network stretch. Application of the VARMA models examined and travel 

time was predicted with good accuracy. 

DynaMIT 2.0: the next 

generation real-time 

dynamic traffic 

assignment system 

Milkovits et al 

(2010) 

Dynamic modelling, real-time 

dynamic traffic assignment. 

Brisa A5 motorway, 25-km inter-

urban expressway between 

Lisbon and Cascais. 

A real time simulation was introduced including two sub-

systems: 1) State estimation and 2) State prediction. The 

purpose of the operation of the real-time model was to 

calibrate up to the minute information and forecast 

traffic conditions over the next hour.  

Real-time traffic 

monitoring and 

forecast through 

OPTIMA – optimal path 

travel information for 

mobility actions 

Meschini and 

Gentile (2009) 

Dynamic modelling, real-time 

dynamic traffic assignment 

Methodological paper OPTIMA 

framework was described. 

A methodology, OPTIMA, was developed, which can 

integrate any software platform for traffic control 

centres, providing off-line estimates and real-time 

forecasts on the use (vehicle flows) and the 

performances (travel times) of the road network, through 

advanced dynamic traffic assignment models and 

algorithms. OPTIMA relies on a priori estimations of the 

traffic evolution during each day-type, which are 

accomplished through the simulation of the whole 

transport system, which reproduces the path choices of 

drivers travelling on the congested road network from 

their origin to their destination at specific instants .Then, 

the real-time measures are used to calibrate and correct 

such a mobility model, adjusting the base estimation to 

http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
http://151.100.152.220/gentile/wp-content/uploads/2010/04/54-OPTIMA-MTITS2009.pdf
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Paper/study Author, year of 

study 

Prediction methods Case network Key remarks 

the current traffic conditions, thus providing robust and 

reliable predictions. 

Using dynamic 

assignment models for 

real-time traffic 

forecast on large urban 

networks 

Gentile and 

Meschini (2011) 

Dynamic modelling, real-time 

dynamic traffic assignment. 

Düsseldorf city, consisting of 

29,000 links, 560 zones and 

about 2 million OD components. 

OPTIMA model is examined. Aggregated validation of the 

real-time model is provided, R square of 0.95-0.55 for 0-

20-min forecast. 

Estimating real-time 

urban traffic states in 

VISUM online 

Ploss and 

Vortisch (2006) 

Time series and route choice 

assignment. 

Major road network in Berlin (ie 

10,000 links and 500 zones). 

VISUM online was used to model the current situation of 

traffic. OD matrices were developed and assigned for 

different time periods. Provided good estimation of 

volumes (correlation of 93%) and reasonable but not very 

accurate (correlation of 78%) forecast for saturation.  

Real-time 

implementation of 

simulation-based 

dynamic traffic 

assignment model 

Hu and Chen 

(2008) 

Dynamic modelling, real-time 

dynamic traffic assignment. 

A network comprised of three 

major freeways and a dense 

network of arterial segment in 

Irvine in Orange County, 

California. 

A framework for short-term planning applications in 

simulation-based dynamic traffic assignment systems 

was developed. This framework captured the day-to-day 

and within-day dynamics of travellers. 
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