The combination of route alignment and facility type must be compatible with the needs of the particular cyclist target audience and the route itself should be compatible with the overall network, noting that different routes may have different target audiences. 

This section describes how to evaluate routes or sections of routes identified in accordance with Identifying cycle route options.

Evaluation requires a multi-criteria analysis (MCA) to examine the effects of multiple factors. Multi-criteria analysis methods for cycling facilities are described in the section on Route option selection. In some cases, changing one aspect will affect the performance of other factors. Therefore, evaluation must be an iterative process. Planners and designers should be aware of the principles discussed in this section when considering the elements discussed in previous sections so as to weed out totally unsuitable options before arriving at the stage of evaluation. Any doubtful options should be included in the MCA analysis so that the process is seen to be transparent when engaging with the community.

Two aspects stand out as being important in any cycling assessment:

  • ‘Does the facility meet the users’ needs?
  • ‘The choice of routes in urban areas is largely determined by the extent to which junction features can be resolved where the cycle route meets or crosses more heavily trafficked roads’ (Ove Arup and Partners, 1997).
  • Assessment methods

    A number of different methods for assessing cycle route options are presented below:

    Guidance on how to choose between options and apply them, as well as other factors to consider is presented in Recommendations for assessment, below.

    Level of service (LoS) assessments

    The concept of LoS (a performance measure) has been discussed in People who cycle; it is a traffic engineering term that describes traffic quality. It is basically a user-satisfaction rating. In general terms, LoS A can be considered ‘very good’, B is ‘good’, C is ‘fair’, D is ‘poor’, E is ‘bad’ and F is ‘very bad’.  Where appropriate, finer distinctions are possible, such as ‘B minus’ or ‘C plus’. However, it must be remembered that these ratings refer to a context, not simply a particular facility type; one must be careful not to say that a particular facility type is ‘good’ or ‘bad’, rather a particular provision in a particular context may offer a ‘good’ or ‘bad’ LoS rating for cycling.

    Ultimately it is a political decision as to what constitutes an acceptable LoS for cycling; typically LoS B or C is usually aimed for. It may also be useful to have implementation targets aimed at progressively reducing the proportion of sites with, for example, LoS D or worse on the existing cycling network.  

    Cycling LoS assessment is based on a significant volume of empirical research on people’s views and reactions to specific cycling environments, conducted mostly since the mid-1990s. Such research focuses on translating these perception scores into definitions of the characteristics that define facilities in each of the LoS ratings. The main factors in people’s perceptions of LoS for cycling are related to safety, comfort and delay, thus characteristics used in LoS definitions may include traffic volumes and speeds, degree of separation from motor traffic, facility width with respect to user volumes, occurrences of delay from crossing roads or passing other users, pedestrian effects, and presence of parked cars or bus stops. Note that the relative importance of safety and delay aspects varies according to the cyclist type; by the Geller classification enthused and confident cyclists place a higher emphasis on delay (whilst still valuing safety, but having a different perception of the conditions required to feel safe) in comparison with interested but concerned cyclists.

    Attractiveness, whilst not a measure used in traditional LoS evaluation, may also be included in evaluating LoS for cycling. On a route level, directness and coherence may factor into the LoS level definitions.

    Danish research has been undertaken for segments of cycle routes between intersections (Jensen 2007) and later intersections (Jensen 2012). United States research has been undertaken in Florida by Landis et al (2003), which forms the basis for a multi-modal LoS assessment that is reported in NCHRP (2010). These are the only published methods that are based on ratings by users experiencing and rating situation in real time – either in the road environment or in a video simulation. They are also the only methods that take into account the interactions between variables. For example the effect of traffic volume, speed and heavy vehicle presence is much less on a separated facility than on a narrow roadway. LaMondia and Moore (2015) compared four ways of combining factors to achieve an LoS score. The method using interaction between factors was the Florida study, and performed much better than all the alternatives in matching user perception surveys. There is an extensive database of real-time user ratings collected in New Zealand as part of the Cycle for Science project, described in Bezuidenhout (2005). It is intended to supplement this in the coming year with more data to develop a robust cycling LoS prediction method for New Zealand. Until then there are a range of available methods – all with their own strengths and weaknesses, which are discussed below.

    Note that different assessment methods will not produce identical results.

    The methods discussed here are:

    User satisfaction surveys

    A user satisfaction survey of cyclist can be conducted for a particular facility. This involves a representative group of cyclists riding down the route to rate each part of it in real time under the appropriate traffic conditions. You can also utilise regular users of the route. The survey forms and method is available from the Transport Agency national cycling team. The method is similar to the community street review process used for pedestrian LoS.


    This is the preferred method of rating existing situations.

    Austroads LoS Metrics for Network Operations Planning

    Austroads (2015)(external link) presents a LoS framework for network operations from the perspective of all road users, including motorists, public transport users, freight, pedestrians and cyclists. This framework is recommended by the NZ Transport Agency as the default for network operating frameworks for New Zealand localities.

    It uses the standard scale from A to F, but is rated subjectively according to written criteria arrived at by a consensus of transport professionals. It deliberately does this to keep the assessment simple.

    The mid-block LoS ratings used by Austroads (2015) build on those of Jensen (2007) who rated LoS based on motor vehicle volumes and speeds, for different facility types in Denmark; the corresponding charts are reproduced in the diagram below. (Note that preliminary comparison with the New Zealand Cycling for Science scores suggests that the Danish ratings are harsher than New Zealand user ratings for lower speed and volume situations.


    The framework is based on a series of ‘LoS needs’ (mobility, safety, access, information and amenity), which are each subdivided into ‘LoS measures’ specific to each road user type. Ratings (from A to F) are assigned according to various defined ‘service measure values’. Note that in some cases a range of LoS ratings (eg C–D) are assigned for a particular service measure value. 

    The LoS measures and their associated needs used are shown in Table 6.

    Table 6: LoS measures and needs for cycling (Austroads 2015)

    LoS measure

    LoS needs



    • Travel speed
    • Congestion (of cycling infrastructure)
    • Grades



    • Risk of cycle-to-cycle/pedestrian crash
    • Risk of crash caused by surface unevenness or slippage
    • Risk of crash with stationary hazards
    • Risk of cycle-to-motor vehicle crash at mid-blocks
    • Risk of cycle-to-motor vehicle crash at intersections and/or driveways



    • Access to and ability to park close to destination
    • Suitability


    • Traveller information available, including signposting



    • Aesthetics
    • Comfort and convenience
    • Security
    • Pavement ride quality

    Table 7 gives an example of the service measure values corresponding to the range of LoS ratings; in this case for the risk of cycle-to-motor vehicle crash at mid-blocks, which is one of the LoS measures relating to the need of safety.

    Table 7: Ratings and service measure values for LoS measure ‘risk of cycle-motor vehicle crash at mid-block’ relating to LoS need of safety (Austroads 2015)


    Service measure value


    Exclusive bicycle facility in a low-risk environment


    Exclusive bicycle facility in a low- to medium-risk road environment or no bicycle facility in a low-risk road environment


    Exclusive bicycle facility in a medium- to high-risk road environment or no bicycle facility in a low- to medium-risk road environment


    Exclusive bicycle facility in a medium- to high-risk road environment or no bicycle facility in a medium-risk road environment


    Bicycle only lane (not Copenhagen style facility where the bicycle facility is behind a kerb) in a high-risk road environment or no bicycle facility in a medium to high-risk road environment


    No bicycle facility in a high-risk road environment

    Note that the Austroads LoS framework does not result in a single LoS classification for a particular facility; instead it gives LoS ratings for every LoS measure, of which there are 14 (as per Table 6). Similarly, the framework does not include a method of combining different LoS ratings for different user types.

    Below is an example of the worksheet used to apply the Austroads framework, corresponding to the LoS measure ‘risk of cycle-to-cycle/pedestrian crash’ under the LoS need of safety. 


    The Austroads LoS framework is suitable for the New Zealand context and can be usefully applied to identify the LOS of individual sections along a route, as long as suitable caution and professional judgement is applied. The individual scores can be gauged according to a threshold LoS to determine whether each section meets the required LoS.

    Intersections and mid-block sections should be treated separately.

    Danish Cycling Level of Service

    This method covers the greatest range of facilities, but still does not cover all of the facility types covered in this guide. It has the best methodology in its development of any of the published methods. It is based on video simulation surveys of Copenhagen residents. The method for between intersections is described in Jensen (2007) and the intersection model in Jensen (2012). There is a spreadsheet available to perform the calculations. It uses the standard LoS rating scales from ‘A’ to ‘F’.

    The NZ Transport Agency National Cycling team is starting a research project to improve the cycling LoS guidance so watch this space for developments.


    Use the Danish method within the framework of the Austroads LoS Metrics for Network Operations Planning, but use judgement to allow for its limitations, and the differences from the New Zealand context.

    NCHRP multi-modal analysis

    This method is the most widely used approach in the United States. It assesses bicycle LoS on links and straight through intersections as part of a multi-modal assessment of LoS. It is based on the research by Landis. The method includes a computer program to simplify the calculations. Refer to NCHRP (2010a). This method is now also utilised in the Highway capacity manual (TRB 2010).


    This method may be considered, but it would be sensible to compare any results with those obtained through the Danish (Jensen) and Austroads (2015) method as well. 

    Cycling Level of Service – Transport for London

    Transport for London’s Cycling Level of Service(external link) (CLoS) assessment is a cycling project checking and rating tool. The tool document describes it this way: ‘A Cycling Level of Service (CLoS) assessment has been developed in order to set a common standard for the performance of cycling infrastructure for routes and schemes, and for individual junctions. The purpose of the CLoS assessment is to frame discussion about design options so that schemes are appealing for existing cyclists and can entice new cyclists onto the network.’

    Like the Austroads (2015) metrics, it is structured around the six design outcomes safety, directness, coherence, comfort, attractiveness and adaptability, these are each broken down further into specific factors. Indicators that can be used to measure performance are specified for each factor, by a set of descriptions accompanied by base scores ranging from 0 to 2, where 0 is basic LoS, 1 is good and 2 is highest LoS. It is similar to a multi-criteria analysis with clear guidance on the rating scales used.

    Certain factors of particular concern are identified as ‘critical’. The CLoS guidance suggests that the base score of critical factors should be multiplied by 3 to give them a greater weighting, and that designers must address any critical factors that have a score of zero. Critical factors may also have a critical rating for items that are worse than basic LoS (worse than 0 but this is not scored) critical factors must be improved to achieve a score of at least 0 to get funded.

    The individual factor scores are then summed to give a total score out of a possible 100 points. Projects have to achieve a target score to be good enough get funded. However, the target score required is not published in the guidance.

    It is intended that CLoS be used at several stages of a project: planning, design brief, preliminary design and post-completion.


    London CLoS is not a true cycling LoS tool, so is not recommended as such. However, it is a useful checklist and rating tool for assessing new projects. Its greatest strength is the way it focuses attention on those aspects which need to be improved to create an acceptable project. It would be of greatest use for the cycling aspects of a multi-criteria analysis tool. With minor adaptation, London CLoS could be used to assess proposed cycling facilities in New Zealand.

    Users could define and justify the acceptable route score to use as a benchmark for assessment.

    Cycling Level of Service Assessment Tool (CLOSAT) – Bicycle Victoria

    VicRoads and Bicycle Network jointly developed the Cyclist Level of Service Assessment Tool (CLOSAT) for assessment of on-road and off-road bicycle facilities in Melbourne (Bicycle Victoria, 2012; Hollander, 2014). The tool developers make a very clear case for the importance of considering LoS to cyclists and why LoS is measured differently for cyclists than for motorists. The tool assesses intersections separately from sections between intersections. It gauges LoS based on a variety of factors including facility type, separation from traffic, geometry, speed of adjacent motor traffic and volume of adjacent motor traffic. 

    The tool developers state that the tool essentially measures a facility’s attractiveness to cyclists, although this definition of ‘attractiveness’ is quite different to the route requirement defined in General route requirements (in People who cycle), which is concerned with the wider environmental surroundings, and is more aligned with the requirements of safety and comfort.

    The authors acknowledged the importance of identifying the types of cyclists and their various needs and developed a schematic of Geller’s (2009) classification as applied to the Melbourne network.

    Applying CLOSAT over a route can identify the ‘weakest link(s)’, ie the sections with the lowest LOS for cycling; if a minimum acceptable LOS is defined it is then obvious which sections require improvement to achieve a suitable level of provision along the entire route. Applications of CLOSAT along Melbourne routes show that LOS for cycling is worst at intersections.

    Applying CLOSAT over a route can identify the ‘weakest link(s)’, ie the sections with the lowest LoS for cycling; if a minimum acceptable LoS is defined it is then obvious which sections require improvement to achieve a suitable level of provision along the entire route. Applications of CLOSAT along Melbourne routes show that LoS for cycling is worst at intersections.

    The images below illustrate the various conditions between intersections associated with the LoS ratings used in CLOSAT and give an example of the CLOSAT worksheet, corresponding to on-road cycle lanes. 


    CLOSAT is not recommended for use in New Zealand in its current form.

    It, however, has useful elements that could be considered in future development of a cycling LoS tool.

    Queensland LoS model for bicycle riders

    Munro (2013) separates cyclists into ‘confident riders’ and ‘cautious riders’, with the understanding that each will have a different approach to defining LoS scores with respect to variations in facility type, delay, interactions with other users on paths, motor vehicle volumes, motor vehicle speeds, and presence of parking. This is a different approach from Austroads (2015) which does not define different target audiences.

    A model for each of the two rider types is given, as well as a third model for all riders combined. The model(s) can be applied over a link (ie a homogenous section) and link scores can be aggregated to give the overall non-intersection LoS for an entire route. It has not, however, been developed for intersection LoS assessment. One insight from the aggregation of sections is that while people expect to be delayed for some time at odd points along their route, they prefer these places to be widely spaced, and do not like to be delayed repeatedly.


    Along with other stated preference methods, this method provides some useful insights into user preferences.

    The online tool may be useful for anyone wishing to quickly test the relative rating of some scenarios.

    The online tool can be accessed by contacting Cameron Munro of CDM consulting.

    Levels of traffic stress


    Mekuria et al (2012) assume that a ‘large majority [of the population] is “traffic intolerant,” willing to tolerate only a small degree of traffic stress’ and equates these users to the ‘interested but concerned’ group as per the Geller (2009) classification (see People who cycle). It presumes such users will only ride if ‘Dutch’ standards of separation are provided. The method seeks to classify roads according to their level of ‘traffic-stress’ based on perceived danger and other stressors such as noise and exhaust fumes.

    The standard level of service scale of A to F was deliberately abandoned on the basis that only traffic engineers understand what it means, and the formulas used in the methods are an unintelligible black box. Instead four levels of traffic stress are defined, that generally correspond to the four Geller categories, but the ‘no way no how’ group is excluded and the ‘interested but concerned’ divided into adults and children. Each facility is scored 1 to 4 to correspond to the level of stress that is thought would be tolerated by the corresponding target audience. The authors use the analysis method to identify the level of connectivity provided and barriers to cycling in networks.


    This method is not recommended for use in New Zealand.

    It, however, has some useful ideas especially for intersections that could be explored when developing a tool for the New Zealand context.

    Needs assessment


    This is an assessment against the criteria presented in Safety issues for people who cycle in relation to each cyclist type and the route characteristics they need.

    To permit a comparison, a summary for each option could be prepared in a standard format – and from this a conclusion or recommendation determined. This summary can be reported on a single page in a similar format to Table 1 (see Summary in  People who cycle) as a table indicating how the proposal will suit each cyclist type.


    Always perform a needs assessment. No other assessment satisfactorily considers the full range of needs of people who cycle. Include the outcome of other assessments, for example the LoS, in a needs assessment report. The best way of including a needs assessment, along with other assessments is to integrate them into the process for a multi-criteria analysis.



    Audits are a formal process for identifying deficiencies in provision. They can be applied to existing facilities or new proposals and can be applied during all project phases, from concept to post-construction audit. They may be specifically for cycling, or encompass all modes of transport. They can also be applied to a specific facility, a route or a network.

    Three different types of audit affect cycling:

    • A road safety audit is a well-established and respected process aimed at identifying deficiencies that will affect the safety of all road users. The best practice guide is the Road safety audit procedures for projects (NZ Transport Agency, 2013a). A road safety audit will incorporate a review of crashes for existing situations, as detailed for cycling in section 7.3.2.
    • A cycling safety audit concentrates on cycle safety issues. It typically interprets safety broadly, as most other matters affect safety in some way. It was developed because traditional road safety audits frequently overlooked cycling issues. Refer to Cycling Aspects of Austroads Guides (Austroads, 2014).
    • A vulnerable road user audit combines a cycle audit with the needs of pedestrians, including disability access issues, and with the needs of equestrians. Shifting the focus from cycling alone makes justifying audits easier as they cover a greater range and number of users. The NZ Transport Agency has developed a non-motorised user (NMU) audit (LTNZ, 2006) that is designed to audit projects throughout the planning and design phases, but is also useful for reviewing existing infrastructure.

    Use cycle audits routinely in project development. Ensure that the audit process includes all the features of a cycle audit, whether as a stand-alone process or as part of a wider audit process.

    Use a cycle audit to identify deficiencies on existing roads and paths.

    Don’t use a cycle audit as a tool to evaluate and compare options.

    Ensure that auditors have suitable specialist knowledge cycle design.

    Close Back to top
  • Recommendations for assessment


    Bus overtaking in wide lane with flush median

    Bus overtaking in wide lane with flush median

    This section offers guidance on the selection and application of the assessment methods presented above, along with other factors that should be included in the consideration of route options.

    Use a combination of methods

    None of the methods listed above will give a complete evaluation of a cycle route or network; it is best to use a mix of methods and multi-criteria analysis. The following points help to select suitable methods:

    • Some form of measure of level of provision for cycling should be included.
      • A standard LoS rating scale from A–F should be used, to be compatible with the best research on user perceptions and to be consistent with the process for network operating and development plans.       
      • The Austroads (2015) metrics provide a useful structure for gauging how a facility meets specific needs of cyclists and is in a format that is readily useable. It has the benefit of being easy to use and requires little data. It relies on assessment against a series of statements and therefore is more subjective than desirable. Where this is not sufficient, other methods can be reviewed to improve the rating. Unless planners are willing to invest additional time in adapting other methods, the Austroads metrics is likely to be the most suitable. 
    • Austroads (2015) method, at this point, does not extend to combining LoS elements into a composite score or  to combine scores for sections to evaluate entire routes, so the approach in Queensland (Munro, 2013  Munro,  could be considered for aggregation into a route score.  
    • As many of the issues associated with developing a cycle route are qualitative, a needs assessment or non-motorised user/cycle review should also be included to adequately assemble all the overarching issues.  
    • Individual RCAs are encouraged to consider implementing a cycle review process, and to work with the Transport Agency to develop a process suitable for New Zealand.
    • Road safety audits, that include specific consideration of safety for people cycling, should be conducted:
      • by independent parties
      • on the completion of scheme design, detailed design and construction.

    GIS can be used to apply methods based on qualitative data (eg LOS methods using parameters such as traffic volumes, traffic speeds, etc). Outputs from qualitative assessments can also be entered into a GIS to be considered alongside other evaluations. Martin (2015) gives a good example of how GIS has been used to assess the appropriateness of a planned cycling network based on multiple criteria.

    Evaluate the whole route

    Routes should be assessed in their entirety wherever possible. However, it is not uncommon for the project scope to be limited for financial or other reasons. For example, a route may extend through more than one local authority’s area or depend on access to land under the control of another agency. In cases like this, any insurmountable issues with another authority may limit the route’s feasibility.

    If the project scope means a route cannot be considered in its entirety, it is important to conduct a less rigorous review beyond the area of detailed assessment. This will help determine any likely physical, financial and political influences that could render a project unfeasible in the future.

    Similarly, evaluators should consider access to/from the route at each end and at all locations along the way. For example, some projects stop immediately before an intersection where cycling access may be difficult. Furthermore, while some routes may provide good through-route connectedness, it may be difficult to turn on or off the route at some intermediate locations.

    Evaluate individual homogenous sections

    A technique to ensuring the whole route meets the required LOS to suit the intended target audience is to evaluate each individual homogenous section. A sub-standard section will become a barrier to cycling the entire route and therefore cycling numbers will not be as high as anticipated. This is linked to the key route requirement of coherence (see General route requirements in People who cycle). 

    Due to their complexity, intersections and crossings commonly have lower LOS scores for cycling than sections between intersections. Therefore more attention needs to be given to them.

    Evaluate throughout the process

    The underlying goal of any cycling project is to provide a suitable level of service (however this is defined) for the intended cycling target audience. A route’s potential to achieve this goal should be evaluated throughout the planning and design process, from the earliest stages. It is usually technically and financially easier to make significant changes at an earlier stage of a project than to correct or retro-fit things later.


    Future demand should be considered as if provisions cannot accommodate an increase in user volumes level of service will decrease over time. It is also important to consider future changes in the general transport network that may affect a route’s ability to provide for cycling.

    Close Back to top
  • Other factors to assess

    In conjunction with the features to monitor presented above, there are several other factors that should be included throughout the monitoring process:

    Financial considerations

    Any evaluation of cycle facilities must include considering the financial commitment required to implement them. Any measures must be both viable and represent value for money. Where financial assistance from the Transport Agency is sought, economic evaluations should following the follow the Monetised benefits and costs manual.

    To assist planners and designers to understand costs for delivering cycle facilities, and to be able to compare costs of different facility types, the Cycle Facility Cost Estimation Tool [XLSX, 15 MB] can be used.  Instructions on how to use the cost estimation tool are included within the spreadsheet tool.

    Environmental effects

    Projects should also be assessed for their effects on the environment; ideally any adverse effects should be minimised and mitigated as much as possible. 

    Historic and cultural heritage

    Adverse effects on historic heritage should be avoided or minimised. An evaluation of cycle facilities should check whether there are any historic/heritage sites of interest within 200 metres of the planned route. Heritage features may add to a project, for example, heritage structures may be repurposed as part of a trail.

    Considering historic heritage in walking and cycling projects information sheet describes heritage considerations for cycling projects.

    Effects on other users and community/political responses

    The effects of cycling projects on other road users, authorities or property owners should be monitored.  The network hierarchy may dictate the extent to which provision for other modes can be compromised due to a cycling project.

    The political ‘climate’ and public views towards cycling can strongly dictate the amount of effort necessary to approve a proposal.  Such factors will not influence the ideal solution, but they will dictate how much effort is required to convince others that this solution is the best 

    Close Back to top
  • Route option selection

    Having identified a range of alternative route options, the cycle route option assessment process concludes with the selection of the preferred option(s).

    The most commonly used assessment technique is a multi-criteria analysis(external link) (MCA). MCA establishes preferences between options by reference to an explicit set of criteria, usually the project objectives that have been identified at the outset. This process provides final decision makers and the community with a deeper level of transparency and ultimately confidence in the resulting outcome. 

    A standard feature of MCA is a performance matrix in which each row (or column) describes an option and each column (or row) describes the performance of the options against each objective/criterion. 

    Performance can be gauged either quantitatively or qualitatively. Quantitative assessments are based on measurable levels (eg ‘less than 5 predicted crashes per year’ or ‘3000–5000 vehicles per day’), whereas qualitative assessments generally rely on comparison with a general description of a category (eg ‘has high degree of safety’ or ‘moderate traffic volumes on road’).  A system of scoring each criterion may be applied to give an overall score for a route and enable comparison between routes. In some cases, it may be necessary to satisfy key criteria (eg safety) before the others can be considered. 

    The Christchurch City Council (CCC) have adopted an assessment methodology for its Major Cycleway Routes [PDF, 4.7 MB] (MCR) that uses the five main cycle design objectives (safety, coherence, directness attractiveness and comfort) supplemented with objectives related to risks to delivery and practical matters(external link). The assessment used for the CCC route selection is based on a qualitative scoring as shown below, where an option must first pass the ‘Is it safe?’ test before being judged against other objectives. This approach is also used for assessing MCR facility types.


    A key advantage of the MCA process is that a sensitivity analysis can determine how this variation influences the overall outcome.  This can be useful when the weighting and the scoring of some criteria are debated by the assessment team, or external parties.  The assessment team should include a range of professional stakeholders and can include external stakeholders such as community representatives and elected members.

    Close Back to top